首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   6篇
一般工业技术   1篇
冶金工业   2篇
  2022年   1篇
  2021年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
The histidine-containing phosphotransfer (HPt) domain is a novel protein module with an active histidine residue that mediates phosphotransfer reactions in the two-component signaling systems. A multistep phosphorelay involving the HPt domain has been suggested for these signaling pathways. The crystal structure of the HPt domain of the anaerobic sensor kinase ArcB has been determined at 2.06 A resolution. The domain consists of six alpha helices containing a four-helix bundle-folding. The pattern of sequence similarity of the HPt domains of ArcB and components in other signaling systems can be interpreted in light of the three-dimensional structure and supports the conclusion that the HPt domains have a common structural motif both in prokaryotes and eukaryotes.  相似文献   
2.
Hydrophobic effects on binding of ribonuclease Tl to guaninebases of several ribonucleotides have been proved by mutatinga hydrophobic residue at the recognition site and by measuringthe effect on binding. Mutation of a hydrophobic surface residueto a more hydrophobic residue (Tyr45 – Trp) enhances thebinding to ribonucleotides, including mononucleotide inhibitorand product, and a synthetic substrate-analog trinudeotide aswell as the binding to dinucleotide substrates and RNA. Enhancementson binding to non-substrate ribonucleotides by the mutationhave been observed with free energy changes ranging from –2.2 to – 3 .9 kJ/mol. These changes are in good agreementwith that of substrate binding, –2.3 kJ/mol, which iscalculated from Michaelis constants obtained from kinetic studies.It is shown, by comparing the observed and calculated changesin binding free energy with differences in the observed transferfree energy changes of the amino acid side chains from organicsolvents to water, that the enhancement observed on guaninebinding comes from the difference in the hydrophobic effectsof the side chains of tyrosine and tryptophan. Furthermore,a linear relationship between nucleolytic activities and hydrophobicityof the residues (Ala, Phe, Tyr, Trp) at position 45 is observed.The mutation could not change substantially the base specificityof RNase Tl, which exhibits a prime requirement for guaninebases of substrates.  相似文献   
3.
Recognition by ribonuclease T1 of guanine bases via multidentatehydrogen bonding and stacking interactions appears to be mediatedmainly by a short peptide segment formed by one stretch of aheptapeptide, Tyr42-Asn43-Asn44-Tyr45-Gly46-Gly47-Phe48. Thesegment displays a unique folding of the polypeptide chain—consistingof a reverse turn, Asn44-Tyr45-Glu46-Gly47, stabilized by ahydrogen-bond network involving the side chain of Asn44, themain-chain atoms of Asn44, Gly47 and Phe48 and one water molecule.The segment is connected to the C terminus of a ß-strandand expands into a loop region between Asn43 and Ser54. Lowvalues for the crystallographic thermal parameters of the segmentindicate that the structure has a rigidity comparable to thatof a ß-pleated sheet. Replacement of Asn44 with alanineleads to a far lower enzymatic activity and demonstrates thatthe side chain of Asn44 plays a key role in polypeptide foldingin addition to a role in maintaining the segment structure.Substitution of Asn43 by alanine to remove a weak hydrogen bondto the guanine base destabilized the transition state of thecomplex by 6.3 kJ/mol at 37°C. In contrast, mutation ofGlu46 to alanine to remove a strong hydrogen bond to the guaninebase caused a destabilization of the complex by 14.0 kJ/mol.A double-mutant enzyme with substitutions of Asn43 by a histidineand Asn44 by an aspartic acid, to reproduce the natural substitutionsfound in ribonuclease Ms, showed an activity and base specificitysimilar to that of the wild-type ribonuclease Ms. The segmenttherefore appears to be well conserved in several fungal ribonucleases.  相似文献   
4.
-SiAION--SiC composites containing up to 12 wt% -SiC were prepared by pressureless sintering. The strength of composites at room temperature remained relatively unchanged, whereas strength at 1200 °C increased for composites. The fracture toughness (K IC) for composites was higher than that for -SiAION ceramics. The maximum value was 5.4 MPa m1/2 for 6 wt% -SiC, and this was an improvement of 15% in comparison with -SiAION ceramics. From SEM observations, an improvement inK IC values was attributed to crack deflections and branching-off of cracks. Intra-granular fractures were frequently observed in -SiAION. From TEM observations, -SiAION crystals were nanocomposites, within which existed the fine crystals in -SiAION crystal. For composite, -SiAION and -SiC crystals were directly in contact. The mismatching zone was observed in -SiC.  相似文献   
5.
Sodium glucose cotransporter 2 inhibitors (SGLT2i) block the reabsorption of glucose by inhibiting SGLT2, thus improving glucose control by promoting the renal excretion of glucose, without requiring insulin secretion. This pharmacological property of SGLT2i reduces body weight and improves insulin resistance in diabetic patients. Such beneficial metabolic changes caused by SGLT2i are expected to be useful not only for glucose metabolism, but also for the protection for various organs. Recent randomized controlled trials (RCTs) on cardiovascular diseases (EMPA-REG OUTCOME trial and CANVAS program) showed that SGLT2i prevented cardiovascular death and the development of heart failure. RCTs on renal events (EMPA-REG OUTCOME trial, CANVAS program, and CREDENCE trial) showed that SGLT2i suppressed the progression of kidney disease. Furthermore, SGLT2i effectively lowered the liver fat content, and our study demonstrated that SGLT2i reduced the degree of hepatic fibrosis in patients at high-risk of hepatic fibrosis. Such promising properties of SGLT2i for cardiovascular, renal, and hepatic protection provide us the chance to think about the underlying mechanisms for SGLT2i-induced improvement of multiple organs. SGLT2i have various mechanisms for organ protection beyond glucose-lowering effects, such as an increase in fatty acids utilization for hepatic protection, osmotic diuresis for cardiac protection, an improvement of insulin resistance for anti-atherogenesis, and an improvement of tubuloglomerular feedback for renal protection.  相似文献   
6.
Molecular-dynamic calculations predict that, if Tyr24 and Asn84are each replaced by a Cys residue, it should be possible toform a third disulfide bond in ribonuclease T1 (RNase T1) betweenthese residues, with only minimal conformational changes atthe catalytic site. The gene encoding such a mutant variantof RNase T1 (Tyr24 – Cys24, Asn84 – Cys84) was constructedby the cassette mutagenesis method using a chemically synthesizedgene. In order to reduce the toxic effect of the mutant enzyme(RNase T1S) on an Escherichia coli host, we arranged for theprotein to be secreted into the periplasmic space by using avector that harbors a gene for an alkaline phosphatase signalpeptide under the control of the trp promoter. The nucleolyticactivity of RNase T1S toward pGpC was approximately the sameas that of RNase T1 at 37°C (pH 7.5). Moreover, at 55°C,RNase T1S retained nearly 70% of its activity while the activityof the wild-type enzyme was reduced to <10%. RNase T1S wasalso more resistant to denaturation by urea than the wild-typeenzyme. However, unlike RNase T1, RNase T1S was irreversiblyand almost totally inactivated by boiling at 100°C for 15min.  相似文献   
7.
The 2.4-A resolution crystal structure of a dominantly active form of the small guanosine triphosphatase (GTPase) RhoA, RhoAV14, complexed with the nonhydrolyzable GTP analogue, guanosine 5'-3-O-(thio)triphosphate (GTPgammaS), reveals a fold similar to RhoA-GDP, which has been recently reported (Wei, Y., Zhang, Y., Derewenda, U., Liu, X., Minor, W., Nakamoto, R. K., Somlyo, A. V., Somlyo, A. P., and Derewenda, Z. S. (1997) Nat. Struct. Biol. 4, 699-703), but shows large conformational differences localized in switch I and switch II. These changes produce hydrophobic patches on the molecular surface of switch I, which has been suggested to be involved in its effector binding. Compared with H-Ras and other GTPases bound to GTP or GTP analogues, the significant conformational differences are located in regions involving switches I and II and part of the antiparallel beta-sheet between switches I and II. Key residues that produce these conformational differences were identified. In addition to these differences, RhoA contains four insertion or deletion sites with an extra helical subdomain that seems to be characteristic of members of the Rho family, including Rac1, but with several variations in details. These sites also display large displacements from those of H-Ras. The ADP-ribosylation residue, Asn41, by C3-like exoenzymes stacks on the indole ring of Trp58 with a hydrogen bond to the main chain of Glu40. The recognition of the guanosine moiety of GTPgammaS by the GTPase contains water-mediated hydrogen bonds, which seem to be common in the Rho family. These structural differences provide an insight into specific interaction sites with the effectors, as well as with modulators such as guanine nucleotide exchange factor (GEF) and guanine nucleotide dissociation inhibitor (GDI).  相似文献   
8.
Several randomized, double blind, placebo-controlled trials (RCTs) have demonstrated that low-density lipoprotein cholesterol (LDL-C) lowering by using statins, including high-doses of strong statins, reduced the development of cardiovascular disease (CVD). However, among the eight RCTs which investigated the effect of statins vs. placebos on the development of CVD, 56–79% of patients had the residual CVD risk after the trials. In three RCTs which investigated the effect of a high dose vs. a usual dose of statins on the development of CVD, 78–87% of patients in the high-dose statin arms still had the CVD residual risk after the trials. An analysis of the characteristics of patients in the RCTs suggests that elevated triglyceride (TG) and reduced high-density lipoprotein cholesterol (HDL-C), the existence of obesity/insulin resistance, and diabetes may be important metabolic factors which determine the statin residual CVD risk. To understand the association between lipid abnormalities and the development of atherosclerosis, we show the profile of lipoproteins and their normal metabolism, and the molecular and biological mechanisms for the development of atherosclerosis by high TG and/or low HDL-C in insulin resistance. The molecular biological mechanisms for the statin residual CVD risk include an increase of atherogenic lipoproteins such as small dense LDL and remnants, vascular injury and remodeling by inflammatory cytokines, and disturbed reverse cholesterol transport. Peroxisome proliferator-activated receptor alpha (PPARα) agonists improve atherogenic lipoproteins, reverse the cholesterol transport system, and also have vascular protective effects, such as an anti-inflammatory effect and the reduction of the oxidative state. Ezetimibe, an inhibitor of intestinal cholesterol absorption, also improves TG and HDL-C, and reduces intestinal cholesterol absorption and serum plant sterols, which are increased by statins and are atherogenic, possibly contributing to reduce the statin residual CVD risk.  相似文献   
9.
Uric acid (UA) is synthesized mainly in the liver, intestines, and vascular endothelium as the end product of an exogenous purine from food and endogenously from damaged, dying, and dead cells. The kidney plays a dominant role in UA excretion, and the kidney excretes approximately 70% of daily produced UA; the remaining 30% of UA is excreted from the intestine. When UA production exceeds UA excretion, hyperuricemia occurs. Hyperuricemia is significantly associated with the development and severity of the metabolic syndrome. The increased urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) expression, and glycolytic disturbances due to insulin resistance may be associated with the development of hyperuricemia in metabolic syndrome. Hyperuricemia was previously thought to be simply the cause of gout and gouty arthritis. Further, the hyperuricemia observed in patients with renal diseases was considered to be caused by UA underexcretion due to renal failure, and was not considered as an aggressive treatment target. The evidences obtained by basic science suggests a pathogenic role of hyperuricemia in the development of chronic kidney disease (CKD) and cardiovascular diseases (CVD), by inducing inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells, and activation of the renin-angiotensin system. Further, clinical evidences suggest that hyperuricemia is associated with the development of CVD and CKD. Further, accumulated data suggested that the UA-lowering treatments slower the progression of such diseases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号