首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   5篇
一般工业技术   1篇
  2022年   4篇
  2021年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.

This paper elaborates on the thickness-dependent structural, optical, and electrical properties of Erbium(III)-Tris-8-hydroxyquinolinato (ErQ3) films. The surface morphology reveals the grains that consolidate to make denser films with increasing film thickness. The ErQ3 grain sizes increased from 80 to 187 nm as the thickness increased from 80 to 190 nm. From XRD analysis, the ErQ3 films are partially crystallized with only one peak at 2θ?=?9.80° and a plateau in the range of 20–40°. Electrical measurement of ErQ3 films showed that the electrical conductivity had a strong dependence on film thickness. Transmittance and reflectance measurements showed that the films exhibited a 2.60 eV bandgap, and it does not depend on the thickness of the film. Also, the dispersion of the refractive index was analyzed to determine the essential parameters. The nonlinear optical parameters such as nonlinear refractive index and third-order nonlinear optical susceptibility were calculated by Miller's principles.

  相似文献   
3.

Herein, we report the formation of organic composite coating consists of epoxy (EP) reinforced para toluene sulphonic acid (PTSA) doped polypyrrole (PPy)–manganese iron oxide (MnFe2O2) as an efficient corrosion inhibitor for copper substrates. The PTSA doped PPy:MnFe2O2 nanocomposite was synthesized via in situ polymerization of PPy in the presence of MnFe2O2 nanoparticles. Structural features of the prepared samples were characterized through scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy and thermogravimetric analysis (TGA). The PTSA doped PPy:MnFe2O2 nanocomposite shows excellent conductivity and improved dielectric performance in comparison to pure PPy. The anti-corrosion performance of this organic composite coating was analyzed through Tafel polarization curves, open circuit potential (OCP), corrosion resistance, impedance spectroscopy and oxygen permeability barrier tests. The nanocomposite coating on copper substrate shows superior corrosion protection efficiency (99%) in comparison to pure epoxy (22%). Adhesion strength of the nanocomposite coating shows significant enhancement due to strong dispersions of MnFe2O2 nanoparticles in the host matrix. Owing to its improved conductivity, excellent anti-corrosion performance along with superior mechanical properties, the organic nanocomposite coating reported in this work can potentially be used to protect the conductive copper surfaces from harsh corrosive environments.

  相似文献   
4.

Design and development of new generation smart sensors for medical applications have gained considerable interest of research community in the recent past. In this work, we propose the fabrication of highly sensitive paracetamol sensors-based iron oxide nanoparticles intercalated with graphitic carbon nitride (g-C3N4) (GCN) via insitu chemical synthesis. Structural features of the composites were analyzed through SEM, EDX, XRD, FTIR, and UV-Visible spectroscopic techniques. Presence of iron oxide nanoparticles in GCN, significantly improved the conductivity bare GCN from 16 to 125 S cm?1 due to extended π–π conjugation and large surface area in the composite system. The GCN-Iron oxide (GCN-FO) nanocomposite has been employed as an electrochemical sensing platform for non-enzymatic detection of paracetamol. The electrochemical studies and cyclic voltammetry (CV) results shows that the GCN-FO composite exhibit superior electrochemical properties due to their lower values of the oxidation and reduction potentials. Electrochemical impedance spectroscopy (EIS) studies indicate decreased charge-transfer resistance for iron oxide doped GCN composite in compare to base GCN. The improved electrochemical sensing performance of modified GCN-FO composite electrode is attributed to the formation heterojunctions between iron oxide nanoparticles and GCN. The modified GCN-FO electrodes were employed for non-enzymatic electrochemical detection of PR. The GCN-FO composite electrode shows excellent sensitivity towards PR with a LOD 0.3 μM. Furthermore, the modified GCN-FO electrodes show excellent reproducibility, selectivity, stability and anti-interference performance. Due to its low-cost fabrication, superior electrochemical sensing performance, these modified GCN-FO electrodes could be a promising material for the detection of paracetamol at low concentrations.

  相似文献   
5.

In the present work, gallium oxide nanoparticles (nGa2O3) are synthesized via the thermal microwave combustion method, while nanocomposites of polyvinyl alcohol (PVA) polymer with various concentrations (0, 1, 2, 3, 4, and 5 wt%) of nGa2O3 are prepared by the casting technique. The structural characterization of nGa2O3, PVA, and films of PVA-Ga2O3 nanocomposites are studied using X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), and Fourier-transform infrared (FTIR) spectroscopy. The HRTEM and XRD examinations showed that the prepared nGa2O3 has an average crystallite size of?~?5.6 nm and particle size of?~?0.9 µm. The FTIR analysis reveals the occurrence of some interactions between nGa2O3 and the functional groups of the PVA structure. On another side, the refractive index, absorption coefficient, and optical bandgap (Eg) were determined using the Wemple-DiDomenico single oscillator model. It was shown that Eg slightly reduced from 3.61 to 3.55 eV with increasing the Ga2O3 content to 3 wt%, while raised again up to 3.58 eV for 5 wt% Ga2O3. Other optical characteristics such as the optical density, extinction coefficient, optical susceptibility, thermal emissivity, optical sheet resistance for the PVA?Ga2O3 nanocomposites are investigated. The linear and nonlinear optical parameters together with their dependencies on the doping ratio reveals the qualification of PVA?Ga2O3 nanocomposites for nonlinear optical applications.

  相似文献   
6.
Journal of Inorganic and Organometallic Polymers and Materials - In this study, Erbium tris-8-hydroxyquinoline (Erq3) thin films were deposited on a cleaned glass substrate using the thermal...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号