首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   1篇
建筑科学   1篇
一般工业技术   3篇
  2019年   2篇
  2017年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
不同的角度会导致对区域概念的不同理解,这就影响到我们如何对待一个地区.这一点通常表现在对一个区域的规划编制、设计手法以及应用怎样的适宜的技术。本文将对雅加达大都市地区“内部”水上岛屿住区(water based islands settlement)的未来发展进行详尽阐述,探讨并举例论证在有关这片岛屿住区的规划和设计中,将雅加达大都市区的海洋地区视为一个“内部”(inside)区域和将岛屿地区作为一个统一的“海陆”(sealand)区域的原因和途径。  相似文献   
2.
Biosynthesis of novel therapeutic nano‐scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time. The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20–50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X‐ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC50) at 31.2 µg/ml against Michigan Cancer Foundation‐7 breast cancer cells.Inspec keywords: biomedical materials, materials preparation, nanoparticles, nanomedicine, nanofabrication, cellular biophysics, microorganisms, cancer, platinum, Fourier transform infrared spectra, proteins, atomic force microscopy, scanning electron microscopy, fluorescence, transmission electron microscopy, surface plasmon resonance, light scatteringOther keywords: cytotoxic potentials, biologically fabricated platinum nanoparticles, Streptomyces sp, MCF‐7 breast cancer cells, biosynthesis, therapeutic nanoscale materials, biomedical applications, pharmaceutical applications, Fourier transform infrared spectrum, amino acids, spherical morphology, topographical images, atomic force microscopy, field emission scanning electron microscopy, X‐ray fluorescence spectrum, transmission electron microscopy analysis, surface plasmon resonance, dynamic light scattering, 3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay, cytotoxicity analysis, Pt  相似文献   
3.
A brain tumour is amongst most devastating and challenging condition to overcome with suitable treatment as the drug has to cross the blood–brain barrier (BBB) with several physiological barriers like opsonisation by the reticuloendothelial system. Presently various techniques such as surgical, chemotherapeutic agents, and radiotherapy techniques have performed to extend the lifespan of patients diagnosed with glioblastoma, which did not maximise the overall survival of patients with a tumour. Nanotechnology is relied upon to diminish the requirement for intrusive methods for conveyance of therapeutics to the central nervous system. Colloidal nanocarriers sizing range 1–1000 nm have been utilised to cross BBB delivers the drug at cell levels with enhanced bioavailability and reduced toxicity. However, solid lipid nanoparticles (SLNs) are considered a highly flexible carrier for more successful remedially in brain tumour. The treatment of a brain tumour via SLNs is gaining greater potency due to its inimitable size and lipidic nature. This review focuses and represents the current strategies of SLNs in the brain tumour treatment with appropriate techniques adopted are highlighted. Based on this review, the authors concluded that SLNs embrace exclusive promising lipidic nanocarrier that could be utilised to target a brain tumour effectively.Inspec keywords: brain, cancer, nanoparticles, blood, molecular biophysics, tumours, nanomedicine, neurophysiology, radiation therapy, colloids, biomedical materials, drug delivery systems, nanofabrication, drugs, cellular biophysicsOther keywords: chemotherapeutic agents, radiotherapy techniques, central nervous system, colloidal nanocarriers sizing range 1–1000 nm, BBB, drug, solid lipid nanoparticles, brain tumour therapeutical uses, lipidic nature, brain tumour treatment, brain targeted delivery, anticancer drugs, prospective approach, blood–brain barrier, physiological barriers, reticuloendothelial system, surgical agents, lipidic nanocarrier, size 1.0 nm to 1000.0 nm  相似文献   
4.
Age‐related macular degeneration (AMD) is a disease affecting the macula by the new blood vessels formation. AMD is widely treated with a combination of anti‐angiogenic and anti‐vascular endothelial growth factor (VEGF) agents. The topical administration of nanodispersions showed enhanced ocular residence time with controlled and prolonged drug delivery to the disease site at the back of the eye. In the present study we developed and characterized nanodispersion containing anti‐angiogenic (artemisinin) and anti‐VEGF agent (dexamethasone) for the topical ocular administration in order to obtain a required drug concentration in the posterior part of the eye. The nanodispersions were prepared with varying concentration of polymer, polyvinyl pyrrolidone K90 and polymeric surfactant, Poloxamer 407. The nanodispersions were found to be smooth and spherical in shape with a size range of 12–26 nm. In‐vitro drug release studies showed the 90–101% of artemisinin and 55–103% of dexamethasone release from the nanodispersions. The blank formulation with a high concentration of polymer and polymeric surfactant showed an acceptable level of haemolysis and DNA damage. The chorioallantoic membrane assay suggested that the nanodispersion possess good anti‐angiogenic effect. Hence the formulated artemisinin and dexamethasone nanodispersion may have the great potential for the AMD treatment.Inspec keywords: drug delivery systems, drugs, eye, blood vessels, DNA, biochemistry, nanofabrication, molecular biophysics, nanomedicine, diseases, biomedical materials, polymers, membranesOther keywords: topical administration, enhanced ocular residence time, controlled prolonged drug delivery, disease site, eye, topical ocular administration, polymeric surfactant, dexamethasone release, dexamethasone nanodispersion, AMD treatment, blood vessel formation, drug concentration, in‐vitro drug release, antiangiogenic effect, artemisinin, dexamethasone loaded topical nanodispersion, age‐related macular degeneration effective treatment, antivascular endothelial growth factor agents, antiangiogenic endothelial growth factor agents, antiVEGF agent, polyvinyl pyrrolidone K90, polymer concentration, Poloxamer 407, size 12.0 nm to 26.0 nm, chorioallantoic membrane assay, DNA damage, haemolysis  相似文献   
5.
Abstact SAPO-34s with low and high Si content were synthesized and characterized by XRD, XRF, NMR, FTIR and TG-DSC. Different Si content generated no apparent difference in XRD patterns and 31P and 27Al MAS NMR spectra. The Si coordination states studied by 29Si MAS NMR predicted the acidity difference caused by Si incorporation. The absorbance of bridge hydroxyls in FTIR spectra also showed the amount of active sites differed with Si content. Both of the two samples were employed as catalysts in the transformation of chloromethane to light olefins and proved to be very selective catalysts for light olefins production. The influences of Si content on chloromethane conversion and product selectivity were investigated in details. Coke amount and coke species were determined by TG-DSC and FTIR. Coke formation was related to the Si content of SAPO-34 and corresponded to the catalytic performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号