首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4914篇
  免费   482篇
  国内免费   11篇
电工技术   78篇
综合类   7篇
化学工业   1368篇
金属工艺   222篇
机械仪表   340篇
建筑科学   71篇
能源动力   251篇
轻工业   458篇
水利工程   6篇
石油天然气   1篇
无线电   868篇
一般工业技术   1089篇
冶金工业   137篇
原子能技术   90篇
自动化技术   421篇
  2023年   50篇
  2022年   66篇
  2021年   150篇
  2020年   129篇
  2019年   154篇
  2018年   158篇
  2017年   181篇
  2016年   223篇
  2015年   173篇
  2014年   260篇
  2013年   394篇
  2012年   393篇
  2011年   449篇
  2010年   312篇
  2009年   338篇
  2008年   276篇
  2007年   203篇
  2006年   196篇
  2005年   172篇
  2004年   143篇
  2003年   165篇
  2002年   113篇
  2001年   107篇
  2000年   97篇
  1999年   92篇
  1998年   86篇
  1997年   62篇
  1996年   45篇
  1995年   32篇
  1994年   37篇
  1993年   23篇
  1992年   20篇
  1991年   13篇
  1990年   14篇
  1989年   16篇
  1988年   12篇
  1987年   5篇
  1986年   9篇
  1985年   9篇
  1984年   9篇
  1983年   5篇
  1982年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有5407条查询结果,搜索用时 15 毫秒
1.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
2.
The esophagus is a tubular-shaped muscular organ where swallowed fluids and muscular contractions constitute a highly dynamic environment. The turbulent, coordinated processes that occur through the oropharyngeal conduit can often compromise targeted administration of therapeutic drugs to a lesion, significantly reducing therapeutic efficacy. Here, magnetically guidable drug vehicles capable of strongly adhering to target sites using a bioengineered mussel adhesive protein (MAP) to achieve localized delivery of therapeutic drugs against the hydrodynamic physiological conditions are proposed. A suite of highly uniform microparticles embedded with iron oxide (IO) nanoparticles (MAP@IO MPs) is microfluidically fabricated using the genipin-mediated covalent cross-linking of bioengineered MAP. The MAP@IO MPs are successfully targeted to a specific region and prolongedly retained in the tubular-structured passageway. In particular, orally administered MAP@IO MPs are effectively captured in the esophagus in vivo in a magnetically guidable manner. Moreover, doxorubicin (DOX)-loaded MAP@IO MPs exhibit a sustainable DOX release profile, effective anticancer therapeutic activity, and excellent biocompatibility. Thus, the magnetically guidable locomotion and robust underwater adhesive properties of the proteinaceous soft microbots can provide an intelligent modular approach for targeted locoregional therapeutics delivery to a specific lesion site in dynamic fluid-associated tubular organs such as the esophagus.  相似文献   
3.
4.
5.
We demonstrate the structural evolution of polymorphic phases in Al2O3-inserted SrMnO3 ceramics synthesized by solid state reaction. While the 4H-hexagonal phase is predominant in pure SrMnO3 ceramics, a small amount of 6H-hexagonal polymorph is identified in addition to the primary 4H-hexagonal SrMnO3 and the secondary hexagonal SrAl2O4 phases in the as-sintered ceramics, evidenced by x-ray diffraction and subsequent Rietveld refinement analyses. The existence of the 6H-hexagonal SrMnO3 phase is corroborated using Raman spectroscopy. The chemical compositions and electronic structures of the Al2O3-inserted SrMnO3 compounds are also examined using energy dispersive spectroscopy and x-ray photoelectron spectroscopy, respectively. The first-principles calculations reveal that there is no clear difference between the total energies of 4H- and 6H-hexagonal polymorphs regardless of the presence/absence of Sr and oxygen vacancies. Possible origins are discussed with the estimation of actual strain based on the refined lattice parameter of 6H SrMnO3.  相似文献   
6.
A facile sol–gel procedure has been developed for the synthesis of colloidal alumina nanocrystals. For the first time, optical characterization procedures were employed to study the quantum confinement effects in optical properties of the prepared Al2O3 sol. Accordingly, the hyperbolic band model was used to determine the optical band gap of colloidal alumina nanocrystals. X‐Ray diffraction pattern was used to study the crystallographic phase of the dried gel. Morphological characterization was performed using scanning electron microscopy (SEM). Inductively Coupled Plasma (ICP) emission spectroscopy was used to determination purity of the Al2O3 powder. High‐resolution TEM showed that the diameter of colloidal nanocrystals is about 10 nm. Photoluminescence spectroscopy demonstrated that quantum yields for colloidal nanocrystals are 68% with 300 nm excitation wavelength. The experimental observations confirm that highly stable alumina sol with strong UV emission was synthesized. The mentioned optical properties have not been reported before.  相似文献   
7.
Frequency Insertion Strategy for Channel Assignment Problem   总被引:1,自引:0,他引:1  
This paper presents a new heuristic method for quickly finding a good feasible solution to the channel assignment problem (CAP). Like many other greedy-type heuristics for CAP, the proposed method also assigns a frequency to a call, one at a time. Hence, the method requires computational time that increases only linear to the number of calls. However, what distinguishes the method from others is that it starts with a narrow enough frequency band so as to provoke violations of constraints that we need to comply with in order to avoid radio interference. Each violation is then resolved by inserting frequencies at the most appropriate positions so that the band of frequencies expands minimally. An extensive computational experiment using a set of randomly generated problems as well as the Philadelphia benchmark instances shows that the proposed method perform statistically better than existing methods of its kind and even yields optimum solutions to most of Philadelphia benchmark instances among which two cases are reported for the first time ever, in this paper. Won-Young Shin was born in Busan, Korea in 1978. He received B.S. in industrial engineering from Pohang University of Science and Technology (POSTECH) in 2001 and M.S in operation research and applied statistics from POSTECH in 2003. Since 2003 he has been a researcher of Agency for Defense Development (ADD) in Korea. He is interested in optimization of communication system and applied statistics. Soo Y. Chang is an associate professor in the Department of Industrial Engineering at Pohang University of Science and Technology (POSTECH), Pohang, Korea. He teaches linear programming, discrete optimization, network flows and operations research courses. His research interests include mathematical programming and scheduling. He has published in several journals including Discrete Applied Mathematics, Computers and Mathematics with Application, IIE Transactions, International Journal of Production Research, and so on. He is a member of Korean IIE, and ORMSS. Jaewook Lee is an assistant professor in the Department of Industrial Engineering at Pohang University of Science and Technology (POSTECH), Pohang, Korea. He received the B.S. degree in mathematics with honors from Seoul National University, and the Ph.D. degree from Cornell University in applied mathematics in 1993 and 1999, respectively. He is currently an assistant professor in the department of industrial engineering at the Pohang University of Science and Technology (POSTECH). His research interests include nonlinear systems, neural networks, nonlinear optimization, and their applications to data mining and financial engineering. Chi-Hyuck Jun was born in Seoul, Korea in 1954. He received B.S. in mineral and petroleum engineering from Seoul National University in 1977, M.S. in industrial engineering from Korea Advanced Institute of Science and Technology in 1979 and Ph.D. in operations research from University of California, Berkeley, in 1986. Since 1987 he has been with the department of industrial engineering, Pohang University of Science and Technology (POSTECH) and he is now a professor and the department head. He is interested in performance analysis of communication and production systems. He has published in several journals including IIE Transactions, IEEE Transactions, Queueing Systems and Chemometrics and Intelligent Laboratory Systems. He is a member of IEEE, INFORMS and ASQ.  相似文献   
8.
Supported zirconcene catalysts on a new support, MgO, were prepared and tested in ethylene polymerization. Three types of impregnation methods were employed to find an optimum supporting method for MgO. The direct impregnation of Cp2ZrCl2 on MgO showed low metal loading and polymerization activity, while the catalyst had a higher metal loading and polymerization activity when MgO was treated with methylaluminoxane (MAO) before supporting. Treatment of MgO with MAO during the supporting step invoked two types of catalytic sites, which was evidenced by the bimodal molecular weight distribution of the polymer products. MgO is considered to have potential as a support for metallocenes.  相似文献   
9.
The presence of hydroaromatic, hydrogen donor components in a coal-derived solvent is one of the more important factors in the successful operation of a non-catalytic coal liquefaction process. Various hydrogen donor species present in a hydrogenated creosote oil have been identified. Their rate of disappearance under conditions that are consistent with a short residence time coal liquefaction process has been used to rank the reactivities of the various hydrogen donors. 1,2,3,10b-Tetrahydrofluoranthene was found to be an exceptional donor while 4,5-dihydropyrene, the hexahydropyrenes and 9,10-dihydrophenanthrene were found to be quite active. Sym.-octahydrophenanthrene and 2a,3,4,5-tetrahydroacenaphthene exhibited moderate activity. Tetralin and the four methyltetralin isomers were found to be unreactive under the coal liquefaction conditions employed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号