首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3880篇
  免费   419篇
  国内免费   7篇
电工技术   54篇
综合类   5篇
化学工业   1346篇
金属工艺   100篇
机械仪表   209篇
建筑科学   74篇
矿业工程   2篇
能源动力   217篇
轻工业   416篇
水利工程   14篇
石油天然气   6篇
无线电   585篇
一般工业技术   810篇
冶金工业   92篇
原子能技术   60篇
自动化技术   316篇
  2024年   7篇
  2023年   45篇
  2022年   61篇
  2021年   115篇
  2020年   109篇
  2019年   85篇
  2018年   146篇
  2017年   146篇
  2016年   169篇
  2015年   164篇
  2014年   213篇
  2013年   226篇
  2012年   285篇
  2011年   340篇
  2010年   236篇
  2009年   280篇
  2008年   230篇
  2007年   164篇
  2006年   158篇
  2005年   122篇
  2004年   134篇
  2003年   143篇
  2002年   105篇
  2001年   69篇
  2000年   70篇
  1999年   67篇
  1998年   74篇
  1997年   49篇
  1996年   51篇
  1995年   42篇
  1994年   26篇
  1993年   25篇
  1992年   17篇
  1991年   25篇
  1990年   16篇
  1989年   24篇
  1988年   13篇
  1987年   14篇
  1986年   9篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有4306条查询结果,搜索用时 15 毫秒
1.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
2.
Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter‐species, and inter‐kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)—bacterial extracellular vesicles—with immune‐modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF‐α and IL‐6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM‐1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post‐injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.  相似文献   
3.
The potential of time‐domain nuclear magnetic resonance (TD‐NMR) for the real‐time monitoring of solution radical polymerizations is demonstrated. A model system composed of a redox‐pair initiator system, acrylamide as monomer and water as solvent was investigated. A second‐generation continuous wave free precession technique was employed to measure the longitudinal relaxation time constant (T1) of the samples throughout the polymerization reactions. This parameter was shown to be sensitive to the reactant feed free‐radical enhancement of the water molecule relaxation time, making it a good probe to monitor monomer conversion in real time in an automated, non‐destructive fashion. It was found that the T1 value was better than the transverse relaxation time constant (T2) for describing the evolution of the polymerization reactions, due to its greater sensitivity to paramagnetic effects. The TD‐NMR signal variation observed was linked to the formation, propagation and termination steps of the radical polymerization kinetics scheme. These first results may contribute to the application of real‐time monitoring of radical polymerization reactions employing low‐cost and robust TD‐NMR spectrometers. © 2018 Society of Chemical Industry  相似文献   
4.
Magnetic nanoparticles have been employed to capture pathogens for many biological applications; however, optimal particle sizes have been determined empirically in specific capturing protocols. Here, a theoretical model that simulates capture of bacteria is described and used to calculate bacterial collision frequencies and magnetophoretic properties for a range of particle sizes. The model predicts that particles with a diameter of 460 nm should produce optimal separation of bacteria in buffer flowing at 1 L h−1. Validating the predictive power of the model, Staphylococcus aureus is separated from buffer and blood flowing through magnetic capture devices using six different sizes of magnetic particles. Experimental magnetic separation in buffer conditions confirms that particles with a diameter closest to the predicted optimal particle size provide the most effective capture. Modeling the capturing process in plasma and blood by introducing empirical constants (ce), which integrate the interfering effects of biological components on the binding kinetics of magnetic beads to bacteria, smaller beads with 50 nm diameters are predicted that exhibit maximum magnetic separation of bacteria from blood and experimentally validated this trend. The predictive power of the model suggests its utility for the future design of magnetic separation for diagnostic and therapeutic applications.  相似文献   
5.
6.
A new transparent microscale circulation-type high pressure equilibrium cell with on-line sampling was devised. With this apparatus, experimental solubility of molecularly complex species such as steroids (cholesterol, stigmasterol and ergosterol) and fatty acids (palmitic acid and stearic acid) in supercritical carbon dioxide(sc-C02) were measured. Also, to find an appropriate substance for enhancing both the polarity and the solubility power of the SC-CO2 solvent, we arbitrarily selected three polar substances such as acetone, methanol and water and the effect of these cosolvents on the solubility of solutes in SC-CO2 are examined. The supercritical phase equilibrium data of solute-cosolvent-sc-CO2 systems were quantitatively correlated using a new equation of state based on the lattice fluid theory incorporated with the concept of multibody interaction. We found that the addition of tracer amount of acetone or methanol to SC-CO2 enhances the solubility of all solutes about thirty to sixty times when compared with the case of pure sc-CO2 However, for the case of cosolvent water, no further enhancement of the solubility of solutes was realized. Also, the versatile fittability of the equation of state proposed in this work was demonstrated with the newly measured ternary supercritical equilibrium data.  相似文献   
7.
Smart TDI readout circuit for long-wavelength IR detector   总被引:3,自引:0,他引:3  
A smart time delay and integration (TDI) readout circuit is suggested which performs background suppression, cell-to-cell non-uniformity compensation, and dead pixel correction. Using the smart TDI readout circuit, the integration capacitor area occupying almost the whole area of a unit-cell can be reduced to one-fifth and transimpedance gain can increase by five times. From measurement results, it is found that the skimming current error for a few hundred nA background current is < 1.25 nA corresponding to LSB/2 of ADC and the non-uniformity introduced by cell-to-cell background current variation is reduced to 1.02 nA  相似文献   
8.
9.
10.
Summary In this study, new hydrogels in rod shape were prepared from N-acryloyl-TRIS(hydroxymethyl)aminomethane (NAT) using ethylene glycol dimethacrylate (EGDMA) or N,N’methylenebisacrylamide (BIS) as crosslinking agent, dimethylformamide (DMF) as solvent and benzoyl peroxide (BPO) as initiator. In most cases, 2-hydroxyethyl methacrylate (HEMA), acrylamide (Aam) or acrylic acid (Aac) were used as co-monomers. The polymeric matrices obtained by free radical polymerization exhibited different properties by changing crosslinker, crosslinker concentration, co-monomer and initial NAT/co-monomer mole ratio. Besides, hydrogels from HEMA, Aam and Aac with BIS in absence of NAT were prepared under the same experimental reaction conditions in order to compare the properties of these products with those synthesized from NAT and the respective co-monomers. Some of the final products were selected to perform urea release assays, conducted through swelling-controlled release. Urea was chosen as “model” plant fertilizer agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号