首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   7篇
电工技术   4篇
化学工业   41篇
金属工艺   11篇
机械仪表   3篇
建筑科学   15篇
能源动力   18篇
轻工业   28篇
无线电   8篇
一般工业技术   35篇
冶金工业   18篇
原子能技术   2篇
自动化技术   27篇
  2024年   2篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   8篇
  2019年   3篇
  2018年   15篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   9篇
  2013年   21篇
  2012年   12篇
  2011年   16篇
  2010年   9篇
  2009年   13篇
  2008年   10篇
  2007年   15篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1994年   4篇
  1993年   1篇
  1982年   2篇
排序方式: 共有210条查询结果,搜索用时 31 毫秒
1.
Objective

Neonatal brain and cardiac imaging would benefit from the increased signal-to-noise ratio levels at 7 T compared to lower field. Optimal performance might be achieved using purpose designed RF coil arrays. In this study, we introduce an 8-channel dipole array and investigate, using simulations, its RF performances for neonatal applications at 7 T.

Methods

The 8-channel dipole array was designed and evaluated for neonatal brain/cardiac configurations in terms of SAR efficiency (ratio between transmit-field and maximum specific-absorption-rate level) using adjusted dielectric properties for neonate. A birdcage coil operating in circularly polarized mode was simulated for comparison. Validation of the simulation model was performed on phantom for the coil array.

Results

The 8-channel dipole array demonstrated up to 46% higher SAR efficiency levels compared to the birdcage coil in neonatal configurations, as the specific-absorption-rate levels were alleviated. An averaged normalized root-mean-square-error of 6.7% was found between measured and simulated transmit field maps on phantom.

Conclusion

The 8-channel dipole array design integrated for neonatal brain and cardiac MR was successfully demonstrated, in simulation with coverage of the baby and increased SAR efficiency levels compared to the birdcage. We conclude that the 8Tx-dipole array promises safe operating procedures for MR imaging of neonatal brain and heart at 7 T.

  相似文献   
2.
Seed processing technologies are essential for seed safety and functionality through protection of physicochemical quality, pathogen inactivation, aflatoxin detoxification and alleviation of mutagenicity. Design of a pilot-scale unit of pulsed electric fields (PEF) to treat sesame seeds with respect to quality parameters, Aspergillus parasiticus inactivation and aflatoxin reduction as well as alleviation of aflatoxin mutagenicity were prompted in this study. PEF energy ranged from 0.97 to 17.28 J achieved maximum reductions of peroxide value and acidity number of 67.4 and 85.7%, respectively, and did not change color L*, a*, b* and hue values. A 60% reduction of A. parasiticus counts occurred at the maximum PEF energy. Aflatoxins G1, G2, B1, and B2 contents decreased by 94.7, 92.7, 86.9, and 98.7%, respectively. Except for the samples treated by 2.16 J with 100 μg/plate and by 6.80 J with 10 μg/plate, PEF treatment provided elimination of aflatoxin mutagenity. It is concluded that PEF treatment can be used to treat sesame seeds with preservation of physicochemical properties, inactivation of A. parasiticus and decomposition of aflatoxins with reduced mutagenicity.  相似文献   
3.
Dynamic stability of the torsional vibrations of a shaft system consisting of two torsionally elastic shafts interconnected through a Hooke's joint is investigated by means of a two degree-of-freedom model. The linearized equations of motion are shown to consist of a set of Mathieu-Hill equations and stability of their solutions is analyzed by means of a monodromy matrix method. Results are presented in the form of stability charts constructed on various parameter planes visualizing the effect of various selected pairs of system parameters on the stability.  相似文献   
4.
Micro electro mechanical systems (MEMS) are used in many application areas in different disciplines and took their place among the most promising technologies. The performance of such systems is primarily related to their dynamical characteristics. This study presents the dynamic characterization techniques that are used to identify the modal parameters of a MEMS device and the methods that can be implemented to change its dynamic response. An electrostatic scanner is chosen as the case study to demonstrate the developed methodologies. Initially, the micro scanner is characterized using experimental modal analysis techniques to obtain frequency response function, modal damping, resonance frequencies, and mode shapes. Then, velocity and position feedback control loops are implemented to the scanner system to alter the damping and stiffness characteristics. A closed-loop Simulink model of the scanner is developed to verify the experimental measurements. Several curve fitting methods are used in order to have an accurate representation of the scanner system. Using the model, the influence of both position and velocity feedback on the effective damping, resonance frequency and the transient behavior of the scanner is investigated. The stability limits of the scanner under velocity feedback are also studied via numerical simulations. Based on the experimental and simulation results, the methodology developed in this study proves itself to be very efficient to alter the dynamical characteristics of the MEMS structures and it can be easily adapted to other MEMS applications.  相似文献   
5.
A straightforward, one-step route has been established to fabricate reduced- (rGO) and nitrogen-doped reduced graphene oxide (NrGO) with remarkable lithium-ion storage properties. The graphene oxide (GO) was synthesized as starting material by improved Hummers’ method. Thereafter, thermally annealing GO with NH3 at elevated temperature to synthesize NrGO was yielded a more open structure with nitrogen sites suitable for enhanced Li intercalation. NrGO exhibited a reversible capacity of 240 mAhg?1 at 10 Ag-1 after 500 cycles with 90% capacity retention, which is the best result achieved among graphene oxide-based anodes at this current density. In contrast to rGO, NrGO cells exhibited a gradually increasing capacity profile, reaching up to 114% of the initial capacity at 0.1, 2, and 10 Ag-1 current densities. Results showed that high occupancy of pyridinic N within NrGO enhanced battery performance and cell kinetics upon cycling which offers long-time operability at high current density.  相似文献   
6.
As demand for more power increases, compression ratios, and operating temperatures keep rising. High speeds combined with high temperatures make turbomachinery sealing applications even more challenging. In order to confirm sufficient service life material pairs should be tested under conditions similar to engine operating conditions. This study presents high temperature friction and wear characteristics of cobalt/nickel superalloys, Haynes 25 (51Co–10Ni–20Cr–15W), Haynes 188 (39Co–22Ni–22Cr–14W), and Haynes 214 (75Ni–16Cr–3Fe–0.5Mn) sheets when rubbed against Hastelloy X (47Ni–22Cr–18Fe–9Mo) pins. Tests are conducted at 25, 200, 400, and 540 °C with a validated custom design linear reciprocating tribometer. Sliding speed and sliding distance are 1 Hz and 1.2 km, respectively. Friction coefficients are calculated with friction force data acquired from a load cell. Wear coefficients are calculated through weight loss measurements. Results indicate that Haynes 25 (H25) has the lowest friction coefficients at all test temperatures. Above 400 °C, H25 and Haynes 188 (H188) exhibit the best wear resistance. Protective cobalt oxide layers are formed on the H25 and H188 at 540 °C in addition to nickel, chrome, and tungsten oxides. Although, it has better oxidation resistance, Haynes 214 has relatively higher wear rates than other tested materials especially at low temperatures. However, its wear performance improves beyond 200 °C.  相似文献   
7.
This study investigated the potential of peanut skin extract (PSE) as inhibitor of lipid oxidation in cooked and raw ground beef (GB) and as antimicrobial agent in raw GB. Results show that addition of PSE to raw GB before cooking significantly inhibited the formation of peroxides and TBARS in cooked GB during the refrigerated storage. PSE at concentration ≥0.06% was as effective as BHA/BHT at 0.02% in inhibiting lipid oxidation. PSE also inhibited the oxidation of meat pigments thereby preserving the fresh redness of treated meat when used at 0.02–0.10%. Microplate assay showed complete inhibition of test bacteria (Bacillus subtilis, Salmonella typhimurium, Staphylococcus aureus, Streptococcus faecalis and Escherichia coli) in the presence of PSE at 0.4% or higher. However, the antimicrobial effect of PSE in GB was less potent. Hence, PSE can primarily serve the dual purposes of preserving the colour of raw GB and preventing lipid oxidation in cooked products.  相似文献   
8.
A series of (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(para‐substituted phenyl)prop‐2‐en‐1‐ones ( TB1 – TB11 ) was synthesized and tested for inhibitory activity toward human monoamine oxidase (hMAO). All compounds were found to be competitive, selective, and reversible toward hMAO‐B except (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(4‐nitrophenyl)prop‐2‐en‐1‐one ( TB7 ) and (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐(4‐chlorophenyl)prop‐2‐en‐1‐one ( TB8 ), which were selective inhibitors of hMAO‐A. The most potent compound, (2E)‐1‐(5‐bromothiophen‐2‐yl)‐3‐[4‐(dimethylamino)phenyl]prop‐2‐en‐1‐one ( TB5 ), showed the best inhibitory activity and higher selectivity toward hMAO‐B, with Ki and SI values of 0.11±0.01 μm and 13.18, respectively. PAMPA assays for all compounds were carried out in order to evaluate the capacity of the compounds to cross the blood–brain barrier. Moreover, the most potent MAO‐B inhibitor, TB5 , was found to be nontoxic at 5 and 25 μm , with 95.75 and 84.59 % viability among cells, respectively. Molecular docking simulations were carried out to understand the crucial interactions responsible for selectivity and potency.  相似文献   
9.
The stereoselective synthesis of chiral 1,3‐diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of β‐hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a β‐hydroxy‐β‐trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2‐trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the β‐hydroxy‐β‐trifluoromethyl ketone was identified after purification and subsequent MALDI‐TOF mass spectrometric analysis. As a result, a new NADP+‐dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the β‐hydroxy‐β‐trifluoromethyl ketone to its corresponding 1,3‐diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N‐ or C‐terminal His‐tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N‐terminal His‐tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the β‐hydroxy‐β‐trifluoromethyl ketone.  相似文献   
10.
The present paper is focused on visible light initiated cationic polymerizations. Photoinitiated polymerization of representative vinyl ether and oxirane monomers using two quinoxaline derivatives; namely (2-(2,3-dihydrobenzo [b][1,4]dioxin-6-yl)-3-(2,3-dihydrobenzo[b]-[1,4]dioxin-7-yl)-5-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-8-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7yl) quinoxaline) (DBQEd) and 2,3,5,8-tetra(thiophen-2-yl)quinoxaline (TTQ) are studied. Novel dyes based on the quinoxaline skeleton are employed as efficient photosensitizers in cationic photopolymerizations. Polymerizations were initiated at room temperature upon irradiation with long-wavelength UV and visible lights in the presence of diphenyliodonium hexafluorophosphate (Ph2I+PF6?). The progress of the polymerizations was monitored by optical pyrometry (OP). Solar irradiation is also employed to carry out the cationic polymerization of a diepoxide monomer in the presence of air.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号