首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
电工技术   1篇
化学工业   9篇
建筑科学   1篇
无线电   3篇
一般工业技术   7篇
冶金工业   1篇
自动化技术   1篇
  2020年   1篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2007年   2篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有23条查询结果,搜索用时 203 毫秒
1.
This article presents the results of investigation into surface modification of carboxylated‐multiwalled carbon nanotubes (MWCNT)s by 5‐aminoisophthalic acid under microwave irradiation as a fast, safe, and simple method. The different contents of functionalized MWCNTs (5, 10, 15 wt%) were effectively dispersed in an aromatic polymer through ultrasonic irradiation to prepare MWCNT reinforced polymer nanocomposites (NC)s. The chiral poly(ester‐imide) (PEI) was prepared by a direct polycondensation of chiral diacid with 4,4′‐thiobis(2‐tert‐butyl‐5‐methylphenol). The effect of the presence of MWCNTs on morphological and thermal properties of the NCs was investigated by X‐ray diffraction, FT‐IR spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy, and field emission scanning electron microscopy. According to TGA data, the PEI/MWCNT NCs showed a much better thermal stability than pristine polymer. The microstructure study of the NCs indicated the compatibility of functionalized MWCNTs with PEI and uniform distribution of them in the polymer matrices. POLYM. COMPOS., 37:835–843, 2016. © 2014 Society of Plastics Engineers  相似文献   
2.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with several amino acids in acetic acid and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L ‐amino acid diacid] (4a–4d) was obtained in high yield. The direct polycondensation reaction of these diacids with 4,4′‐thiobis(2‐tert‐butyl‐5‐methylphenol) (5) was carried out in a system of tosyl chloride(TsCl), pyridine, and N,N‐dimethyl formamide (DMF) to give a series of novel optically active poly(esterimide)s. Step‐growth polymerization was carried out by varying the time of heating and the molar ratio of TsCl/diacid, and the optimum conditions were achieved. These new chiral polymers were characterized with respect to chemical structure and purity by means of specific rotation experiments, FTIR, 1H‐NMR, X‐ray diffraction, elemental, and thermogravimetric analysis (TGA) field emission scanning electron microscopy (FE‐SEM) techniques. These polymers are readily soluble in many polar organic solvents like DMF, N,N‐dimethyl acetamide, dimethyl sulfoxide, N‐methyl‐2‐pyrrolidone, and protic solvents such as sulfuric acid. TGA showed that the 10% weight loss temperature in a nitrogen atmosphere was more than 390°C; therefore, these new chiral polymers have useful levels of thermal stability associated with good solubility. Furthermore, study of the surface morphology of the obtained polymers by FE‐SEM showed that each polymers exhibit nanostructure morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
3.
A simple procedure was developed for the preparation of glassy carbon electrodes modified with single wall carbon nanotubes (SWCNTs) and multilayers of SiΜο12Ο404−-[Ru(bpy)(tpy)Cl]+(byp; bipyridine, tpy; terpyridine). Layer-by-layer deposition technique was used for the multilayer formation of SiΜο12Ο404−-[Ru(bpy)(tpy)Cl]+ onto SWCNTs films. Based on the strong electrostatic attraction of oppositely charged species a Ru-complex/poly oxometalate hybrid film strongly and irreversibly adsorbed on the glassy carbon electrode modified with single walled carbon nanotubes. The multilayer assembly exhibited good stability and excellent electrochemical reversibility for both redox systems in the pH range1-7. It was found that up to fifteen monolayers could be deposited onto a carbon nanotube film with well defined redox behavior. The modified electrode shows excellent electrocatalytic activity towards sulfite oxidation. Due to synergistic effect between SWCNTs and oppositely charged species the repeated alternate adsorption of anions and cations by this simple dipping method leads to molecular sandwiches with interesting redox activity and remarkable stability.  相似文献   
4.
This paper deals with the Ritz spectral method to solve a class of fractional optimal control problems (FOCPs). The developed numerical procedure is based on the function approximation by the Bernstein polynomials along with fractional operational matrix usage. The approximation method is computationally consistent and moreover, has a good flexibility in the sense of satisfying the initial and boundary conditions of the optimal control problems. We construct a new fractional operational matrix applicable in the Ritz method to estimate the fractional and integer order derivatives of the basis. As a result, we achieve an unconstrained optimization problem. Next, by applying the necessary conditions of optimality, a system of algebraic equations is obtained. The resultant problem is solved via Newton's iterative method. Finally, the convergence of the proposed method is investigated and several illustrative examples are added to demonstrate the effectiveness of the new methodology.  相似文献   
5.
In this study, a new optically active poly(ester-imide) (PEI) was synthesized from the polymerization reaction of N,N′-(pyromellitoyl)-bis-l-phenylalanine diacid with 4,4′-thiobis(2-tert-butyl-5-methylphenol) using tosyl chloride, pyridine and N,N-dimethyl formamide as a condensing agent. The obtained polymer and inorganic metal oxide bionanocomposites composed of poly(ester-imide)/titanium dioxide were synthesized through ultrasonic irradiation. The formation of PEI was confirmed by 1H NMR, fourier transform IR spectroscopy (FT-IR), specific rotation and elemental analysis. The resulting bionanocomposites were characterized by FT-IR, powder X-ray diffraction (XRD), atomic force microscopy)AFM(, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The TEM, SEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PEI matrix on nanoscale. TGA confirmed that the heat stability of the nanocomposite was improved in the presence of TiO2 nanoparticles.  相似文献   
6.
Carboxylic functionalized multi-walled carbon nanotubes (MWCNTs) have been incorporated to biodegradable poly(ester-imide) (PEI) matrix and the effect of the carboxylated-MWCNT on the thermal and morphological properties of MWCNT-reinforced bionanocomposites (BNCs) was demonstrated. Chiral PEI was synthesized from a step-growth polymerization of amino acid based diacid (4) with 4,4′-thiobis(2-tert-butyl-5-methylphenol) (5) promoted by tosyl chloride in pyridine and N,N-dimethyl formamide solution. The resulting BNCs were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The homogeneous dispersion of MWCNTs throughout PEI matrix and strong interfacial adhesion between them were achieved in the obtained BNCs as evidenced by FE-SEM and TEM images. The results from TGA indicated that the thermal stability of the resulting BNCs was obviously improved in comparison with the pure PEI.  相似文献   
7.
Previous intrapericardial left pneumonectomy and irradiation necessitated an unorthodox, staged approach to myocardial revascularization in a patient with unstable angina pectoris, left main artery, and three-vessel coronary artery disease. A saphenous vein bypass graft was constructed from the descending thoracic aorta to the left anterior descending coronary artery via left thoracotomy, without cardiopulmonary bypass. Two days later the patient underwent stenting of the left main and circumflex coronary arteries. Recovery was uneventful.  相似文献   
8.
A series of new poly(1,2,4-triazole)s (PTAs) containing pyridine heterocyclic ring, bearing bulky aromatic pendent groups, were synthesized from the reaction of the corresponding polyhydrazides with aniline or 4-aminobenzenesulfonic acid in polyphosphoric acid (PPA) at 175 °C. The non-sulfonated PTAs showed glass transition temperatures (T gs) of 220–250 °C and inherent viscosities (η inh) equal to 0.48–0.78 dL/g, and the sulfonated poly(1,2,4-triazole)s (S-PTAs) exhibited T gs of 235–265 °C and inherent viscosities equal to 0.50–0.83 dL/g. The former polymers were soluble in conc. H2SO4 and partially soluble in hot N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), and 1-methyl-2-pyrrolidone (NMP), and the latter were soluble in DMF, NMP, DMSO and DMAc at room temperature. All polymers had useful levels of thermal stability and were stable up to 450 °C in nitrogen. The proton conductivities of undoped sulfonated polytriazole membranes and the acid-doped sulfonated polytriazole membranes lie in the range of 5 × 10?4–8.1 × 10?3 and 5 × 10?3–2.3 × 10?2 S/cm, respectively, at 90 °C and 100 % relative humidity.  相似文献   
9.
Nano-structure of a new 1D double-chain Pb(II) coordination polymer, [Pb(μ-HPDC)(μ-Br)(H2O)]n (1), {H2PDC = 2,3-pyrazinedicarboxylic acid} was synthesized by a sonochemical method. The new nano-structure was characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. The structure of compound 1 was determined by single crystal X-ray diffraction and consists of 1D double-chain polymeric units. The coordination number in compound 1 is six and each lead atom is coordinated by two oxygen atoms of HPDC, two nitrogen atoms of HPDC ligands, one bromide atom and one oxygen of H2O molecule. The thermal stability of compound 1 was studied by thermal gravimetric and differential thermal analyses. Calcination of the nano-belts of compound 1 at 500 °C under air atmospheres yielded nano-sized particles of PbBr(OH) that characterized by scanning electron microscopy and X-ray powder diffraction.  相似文献   
10.
Highly ordered arrays of Co1−xZnx (0 ≤ x ≤ 0.74) nanowires (NWs) with diameters of ∼35 nm and high length-to-diameter ratios (up to 150) were fabricated by co-electrodeposition of Co and Zn into pores of anodized aluminum oxide (AAO) templates. The Co and Zn contents of the NWs were adjusted by varying the ratio of Zn and Co ion concentrations in the electrolyte. The effect of the Zn content, electrodeposition conditions (frequency and pH) and annealing on the structural and magnetic properties (e.g., coercivity (Hc) and squareness (Sq)) of NW arrays were investigated using X-ray diffraction (XRD), scanning electron microscopy, electron diffraction, and alternating gradient force magnetometer (AGFM). XRD patterns reveal that an increase in the concentration of Zn ions of the electrolyte forces the hcp crystal structure of Co NWs to change into an amorphous phase, resulting in a significant reduction in Hc. It was found that the magnetic properties of NWs can be significantly improved by appropriate annealing process. The highest values for Hc (2050 Oe) and Sq (0.98) were obtained for NWs electrodeposited using 0.95/0.05 Co:Zn concentrations at 200 Hz and annealed at 575 °C. While the pH of electrolyte is found to have no significant effect on the structural and magnetic properties of the NW arrays, the electrodeposition frequency has considerable effects on the magnetic properties of the NW arrays. The changes in magnetic property of NWs are rooted in a competition between shape anisotropy and magnetocrystalline anisotropy in NWs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号