首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
化学工业   16篇
金属工艺   2篇
水利工程   1篇
无线电   1篇
一般工业技术   4篇
冶金工业   1篇
自动化技术   1篇
  2023年   4篇
  2022年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有26条查询结果,搜索用时 343 毫秒
1.
Poly(l-lactic acid) (PLLA)/graphene nanoplatelets (GnP) nanocomposites were prepared through solvent casting and coagulation methods. The better dispersion of graphene was achieved by ultrasounds and its effect on crystallinity, thermomechanical and electrical properties of PLLA were studied and compared in both methods. Differential scanning calorimetry (DSC) was used to investigate the crystallinity of PLLA and its composites. Field emission gun scanning electron microscope (FEG-SEM) and wide-angle X-ray scattering (WAXS) were employed to characterize the microstructure of PLLA crystallites. Dynamic mechanical thermal analysis (DMTA) was performed to study the thermomechanical properties of the nanocomposites. FEG-SEM images illustrated finer dispersion of GnP in samples obtained by coagulation method with respect to solvent casting method. Graphene imparted higher electrical conductivity to nanocomposites obtained by solvent casting under ultrasound due to better formation of graphene network. DSC thermograms and their resulting data showed positive effects of GnP on crystallization kinetics of PLLA in both methods enhanced by the nucleating effect of graphene particles. Meanwhile, the effect of GnP, as nucleating agent, was more prominent in samples produced by coagulation method without utilization of ultrasounds. WAXS patterns represented the same characteristic peaks of PLLA in nanocomposite specimens suggesting similar crystalline structure of PLLA in presence of graphene, and the intensified peaks of nanocomposites compared to neat PLLA confirmed the DSC results regarding its improved crystallinity. Graphene increased storage modulus in rubbery region and glass transition temperature of nanocomposites in the coagulation method due to restricted mobility of PLLA chains.  相似文献   
2.
The aim of this study is to investigate the effect of thermomechanical treatment on the superelastic behavior of a Ti-50.5 at.%Ni wire in terms of loading/unloading plateau, mechanical hysteresis, and permanent set to optimize these parameters for orthodontic applications. A new three-point bending fixture, oral cavity configuration three-point bending (OCTPB) test, was utilized to determine the superelastic property in clinical condition, and therefore, the tests were carried out at 37 °C. The results indicate that the thermomechanical treatment is crucial for thermal transformation and mechanically induced transformation characteristics of the wire. Annealing of thermomechanically treated specimens at 300 and 400 °C for 1/2 and 1 h leads to good superelasticity for orthodontic applications. However, the best superelasticity at body temperature is obtained after annealing at 300 °C for 1/2 h with regard to low and constant unloading force and minimum permanent set.  相似文献   
3.
In this research, polyvinyl chloride (PVC) with excellent shape-memory effects is 4D printed via fused deposition modeling (FDM) technology. An experimental procedure for successful 3D printing of lab-made filament from PVC granules is introduced. Macro- and microstructural features of 3D printed PVC are investigated by means of wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) techniques. A promising shape-memory feature of PVC is hypothesized from the presence of small close imperfect thermodynamically stable crystallites as physical crosslinks, which are further reinforced by mesomorphs and possibly molecular entanglement. A detailed analysis of shape fixity and shape recovery performance of 3D printed PVC is carried out considering three programming scenarios of cold (Tg −45 °C), warm (Tg −15 °C), and hot (Tg +15 °C) and two load holding times of 0 s, and 600 s under three-point bending and compression modes. Extensive insightful discussions are presented, and in conclusion, shape-memory effects are promising,ranging from 83.24% to 100%. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state-of-the-art shape-memory materials library for 4D printing, and provide pertinent results that are instrumental in the 3D printing of shape-memory PVC-based structures.  相似文献   
4.
In this study, the ternary blends containing microporosity based on poly(l-lactic acid) (PLLA), poly(ε-caprolactone) (PCL) and polyethylene oxide (PEO) were prepared using an internal mixer via a polymer leaching technique. The particulate leaching is the most widely used technique to create porosity. To introduce macroporosity besides micropores, NaCl particulates were incorporated into the ternary blends at 40–80 wt % and macropores were formed by particulate leaching. Samples porosity were evaluated by calculating the ratio of porous scaffold density (ρ*) to the non-porous material density (ρ s). The results showed that with an increase in NaCl particulate content, the amount of porosity increased and the distribution of pore size was gradually transformed from monomodal into bimodal form. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson–Ashby model. Compressive modulus decreased with an increase in NaCl particulate concentration due to the increase in porosity and thinning of pore wall that caused rupture at these weaker spots. Blending and forming of the bio-scaffold can be made using conventional polymer processing equipment. This process seems promising for a large-scale production of porous bio-scaffold of many sizes through an economic method.  相似文献   
5.
Styrene‐(maleic anhydride) copolymer (SMA) compatibilized blends of acrylonitrile‐butadiene rubber (ABS) and polyamide 6 (PA6) with a variety of compositions and compatibilizer levels were prepared at various screw speeds in a corotating twin screw extruder. A Box–Behnken model for three variables, with three levels, was chosen as an experimental design, and the mechanical properties of the blends were considered as the responses. Each response was analyzed and formulated versus the considered factors by the use of response surface methodology. Impact resistance increased with increased SMA concentration and reduced screw speed. In compatibilized samples, with an increase in PA6 content, higher impact resistance was observed. Increasing PA6 content and SMA concentration, as well as decreasing screw speed, gave improvements in both tensile and flexural strengths. In each case, all of the correlations among factors were studied. Grafting of SMA was proved by detecting the graft copolymer (SMA‐PA6) formed through extraction in formic acid and FTIR spectroscopy. Compared with uncompatibilized blends, compatibilized samples displayed more uniform and finer particle sizes, thereby proving the compatibilizing effect of the graft copolymer. The asymmetry trend in dispersed particle size before and after the phase inversion became more differentiated in the presence of the compatibilizer. Adding SMA lowered the phase inversion composition (based on PA6), whereas higher screw speed increased it. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   
6.
The rapidly expanding field of multimedia communications has fueled significant research and development work in the area of real-time video encoding. Dedicated hardware solutions have reached maturity and cost-efficient hardware encoders are being developed by several manufacturers. However, software solutions based on a general purpose processor or a programmable digital signal processor (DSP) have significant merits. Toward this objective, we have developed a flexible framework for video encoding that yields very good computation-performance tradeoffs. The proposed framework consists of a set of optimized core components: motion estimation (ME), the discrete cosine transform (DCT), quantization, and mode selection. Each of the components can be configured to achieve a desired computation-performance tradeoff. The components can be assembled to obtain encoders with varying degrees of computational complexity. Computation control has been implemented within the proposed framework to allow the resulting algorithms to adapt to the available computational resources. The proposed framework was applied to MPEG-2 and H.263 encoding using Intel's Pentium/MMX desktop processor. Excellent speed-performance tradeoffs were obtained  相似文献   
7.
Recently, for reasons both economical and environmental, recycling of waste tires based on (styrene butadiene rubber)/(natural rubber) (SBR/NR) has been widely considered. Response surface methodology (RSM) has been used to predict SBR/NR devulcanization behavior in a co‐rotating twin screw extruder. In this study, variable parameters were barrel temperature, screw configuration, and content of devulcanization agent. A Box‐Behnken design for the three variables, at three levels, was chosen. The sol fraction of devulcanized rubber, Δtorque (difference between maximum and minimum curing torque), and mechanical properties of revulcanizate samples were considered as the responses. The results indicated that an increase of devulcanization agent content at a certain temperature caused the sol fraction to increase. Samples including a higher sol fraction showed a lower cross‐link density. Sol fraction for high shear rate screw configuration was lower than that for other screw configurations. Tensile strength of revulcanized rubber showed a decrease with a rise of devulcanization temperature. Moreover, a relationship connecting the residence time in the extruder with stagger angle and length of different kneading blocks were obtained. J. VINYL ADDIT. TECHNOL., 19:65–72, 2013. © 2013 Society of Plastics Engineers  相似文献   
8.
In this work, the effects of the presence and modification of graphene nanoplatelets (GNps) on the crystallization of the poly(lactic acid) (PLA) were studied. Functionalization of GNps was accomplished by acid treatment. Nanocomposite samples were prepared by solution method containing pristine and functionalized graphene. In contrast to pristine PLA, crystallization of the samples contains nano filler initiates at higher rates that showed the role of heterogeneous nucleating effects of these particles in crystallization of the PLA. Then, the effect of nano filler functionalization was comprised. Initial slope of the crystallization (S i) and full width at the half height maximum of crystallization peak are indicative of nucleation rate and spherulite size distribution, respectively; which upon the addition of the functionalized graphene nanoplatelets (FGNps), S i increased and spherulites gained normal size distribution. Non-isothermal and crystallization kinetics of the samples were studied using differential scanning calorimetry at heating rates of 2, 4, 6 and 10 °C/min. Performed techniques such as furrier transform infrared, dynamic-mechanical thermal analysis and visual observation of sediments confirmed the successful modification of the graphene platelets. Also, non-isothermal analysis pinpointed the fact that crystallization temperature (T c) of the nanocomposites has increased by 11–21 °C, compared to the neat PLA. Upon verification of Avrami’s theory, it was conducted that dominant mechanism of nucleation of the nanocomposite samples was 2D circular diffusion; wherein, Avrami’s exponent (n) was determined as 2. Moreover, it was deduced from Avrami’s equation that “n” have no discernible changes in nanocomposites containing GNps or FGNps. Electrical devices and shape memories can be the main application of these nanocomposites.  相似文献   
9.
In the present work, a reliable, rapid, and controllable method is developed for the continuous generation of pharmaceutical curcumin and loratadine nanoparticles (NPs). Micro droplets of curcumin and loratadine were generated by atomization of their corresponding solutions by a combination of a micro electro mechanical system and an electromagnetic resonator cavity. After evaporation of the solvent of micro droplets by electromagnetic waves, the NPs were collected by a polytetrafluoroethylene (PTFE) filter. NPs were characterized by scanning electron microscopy. Results showed that this method can be an effective way to produce amorphous NPs with narrow particle size distribution, where particle size can be easily controlled by solution concentration. Particles size varies from 152 to 446?nm and from 116 to 719?nm for loratadine and curcumin, respectively.  相似文献   
10.

Water productivity is a major challenge in all agricultural regions and despite water shortages, farmers do not welcome water management strategies due to a lack of knowledge of possible economic consequences. This study aimed to introduce the optimum applied water depths under limiting conditions through mathematical optimization. The effects of optimization were coupled with irrigation scheduling to assess yield, water productivity, and net income. Production and cost functions were created based on two scenarios for the applied water. According to the results, the best applied water depth under water limiting conditions depends on land limiting conditions and how severe water limitation is. In mild to moderate water limiting conditions, by using the optimum applied water depth (Ww), water can be saved by 26% causing a 3 to 4% decrease in the net income per unit of land and a 16% increase in the net income per unit of water. As water supply is severely limited, using the equivalent optimum applied water depth (Wew) results in the highest productivity. Although using Wew causes a 14 to 17% decrease in the net income per unit of land, it saves water by 46%. In water limiting conditions, if the land is not limited, using Wew causes the maximum net income per unit of land. A sensitivity analysis was conducted for the net income and the optimum applied water depths, as well. Furthermore, irrigation scheduling caused a 27% increase in the net income per unit of land. Overall, using optimum applied water depths and irrigation scheduling are highly recommended for addressing water scarcity.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号