首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   28篇
电工技术   2篇
化学工业   160篇
金属工艺   5篇
机械仪表   5篇
建筑科学   3篇
能源动力   7篇
轻工业   70篇
无线电   6篇
一般工业技术   30篇
冶金工业   8篇
自动化技术   13篇
  2022年   38篇
  2021年   43篇
  2020年   10篇
  2019年   19篇
  2018年   13篇
  2017年   20篇
  2016年   11篇
  2015年   13篇
  2014年   13篇
  2013年   13篇
  2012年   19篇
  2011年   12篇
  2010年   15篇
  2009年   7篇
  2008年   14篇
  2007年   6篇
  2006年   10篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
1.
Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. HD-related pathological remodelling has been reported in HD mouse models and HD carriers. In this study, we studied structural abnormalities in the optic nerve by employing Spectral Domain Optical Coherence Tomography (SD-OCT) in pre-symptomatic HD carriers of Caucasian origin. Transmission Electron Microscopy (TEM) was used to investigate ultrastructural changes in the optic nerve of the well-established R6/2 mouse model at the symptomatic stage of the disease. We found that pre-symptomatic HD carriers displayed a significant reduction in the retinal nerve fibre layer (RNFL) thickness, including specific quadrants: superior, inferior and temporal, but not nasal. There were no other significant irregularities in the GCC layer, at the macula level and in the optic disc morphology. The ultrastructural analysis of the optic nerve in R6/2 mice revealed a significant thinning of the myelin sheaths, with a lamellar separation of the myelin, and a presence of myelonoid bodies. We also found a significant reduction in the thickness of myelin sheaths in peripheral nerves within the choroids area. Those ultrastructural abnormalities were also observed in HD photoreceptor cells that contained severely damaged membrane disks, with evident vacuolisation and swelling. Moreover, the outer segment of retinal layers showed a progressive disintegration. Our study explored structural changes of the optic nerve in pre- and clinical settings and opens new avenues for the potential development of biomarkers that would be of great interest in HD gene therapies.  相似文献   
2.
Abnormal glycosylation of cancer cells is considered a key factor of carcinogenesis related to growth, proliferation, migration and invasion of tumor cells. Many plant-based polyphenolic compounds reveal potential anti-cancer properties effecting cellular signaling systems. Herein, we assessed the effects of phenolic acid, p-coumaric acid and flavonoids such as kaempferol, astragalin or tiliroside on expression of selected cancer-related glycoforms and enzymes involved in their formation in AGS gastric cancer cells. The cells were treated with 80 and 160 µM of the compounds. RT-PCR, Western blotting and ELISA tests were performed to determine the influence of polyphenolics on analyzed factors. All the examined compounds inhibited the expression of MUC1, ST6GalNAcT2 and FUT4 mRNAs. C1GalT1, St3Gal-IV and FUT4 proteins as well as MUC1 domain, Tn and sialyl T antigen detected in cell lysates were also lowered. Both concentrations of kaempferol, astragalin and tiliroside also suppressed ppGalNAcT2 and C1GalT1 mRNAs. MUC1 cytoplasmic domain, sialyl Tn, T antigens in cell lysates and sialyl T in culture medium were inhibited only by kaempferol and tiliroside. Nuclear factor NF-κB mRNA expression decreased after treatment with both concentrations of kaempferol, astragalin and tiliroside. NF-κB protein expression was inhibited by kaempferol and tiliroside. The results indicate the rationality of application of examined polyphenolics as potential preventive agents against gastric cancer development.  相似文献   
3.
(1) Background: Depending on the type of hydrophilic polymer used, different types of hydrogels may be chemically stable or may degrade and eventually disintegrate, or dissolve upon exposure to sunlight. Many over-the-counter medications are now stored with a limited control of temperature, humidity and lighting. Therefore, in this study, the photostability of a gel made of cross-linked polyacrylic acid (PA), methylcellulose (MC) and aristoflex (AV) was assessed, and the interaction between the polymers used and ascorbic acid and its ethylated derivative was investigated. (2) Methods: The samples were continuously irradiated at constant temperature for six hours. The stability of the substance incorporated into the gels was assessed using a UV-Vis spectrophotometer. FTIR-ATR infrared spectroscopy was used to measure changes during the exposure. (3) Results: Ascorbic acid completely decomposed between the first and second hours of illumination in all samples. The exception is the preparation based on polyacrylic acid with glycerol, in which the decomposition of ascorbic acid slowed down significantly. After six hours of irradiation, the ethylated ascorbic acid derivative decomposed in about 5% for the polyacrylic acid-based gels and aristoflex, and in the methylcellulose gel it decomposed to about 2%. In the case of ascorbic acid, the most stable formulation was a gel based on polyacrylic acid and polyacrylic acid with glycerol, and in the case of the ethyl derivative, a gel based on methylcellulose. (4) Conclusions: The experiment showed significant differences in the decomposition rate of both compounds, resulting from their photostability and the polymer used in the hydrogel.  相似文献   
4.
Colloidal nanoplatelets (NPLs) and nanosheets with controlled thickness have recently emerged as an exciting new class of quantum-sized nanomaterials with substantially distinct optical properties compared to 0D quantum dots. Zn-based NPLs are an attractive heavy-metal-free alternative to the so far most widespread cadmium chalcogenide colloidal 2D semiconductor nanostructures, but their synthesis remains challenging to achieve. The authors describe herein, to the best of their knowledge, the first synthesis of highly stable ZnO NPLs with the atomically precise thickness, which for the smallest NPLs is 3.2 nm (corresponding to 12 ZnO layers). Furthermore, by means of dynamic nuclear polarization-enhanced solid-state 15N NMR, the original role of the benzamidine ligands in stabilizing the surface of these nanomaterials is revealed, which can bind to both the polar and non-polar ZnO facets, acting either as X- or L-type ligands, respectively. This bimodal stabilization allows obtaining hexagonal NPLs for which the surface energy of the facets is modulated by the presence of the ligands. Thus, in-depth study of the interactions at the organic–inorganic interfaces provides a deeper understanding of the ligand–surface interface and should facilitate the future chemistry of stable-by-design nano-objects.  相似文献   
5.
The composites based on polylactide (PLA) and poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with the addition of antibacterial particles: silver (Ag) and copper oxide (CuO) are characterized. Basic mechanical properties and biodegradation processes, as well as biocompatibility of materials with human cells are determined. The addition of Ag or CuO to the polymers do not significantly affect their mechanical properties, flammability, or biodegradation rate. However, several differences between the base materials are observed. PLA‐based composites have higher tensile and impact strength values, while PHBV‐based ones have a higher modulus of elasticity, as well as better mechanical properties at elevated temperatures. Concerning biocompatibility, each of the tested materials support the growth of fibroblasts over time, although large differences are observed in the initial cell attachment. The analysis of hydrolytic degradation effects on the structure of materials shows that PHBV degrades much faster than PLA. The results of this study confirm the good potential of the investigated biodegradable polymer composites with antibacterial particles for future biomedical applications.  相似文献   
6.
Hydratases provide access to secondary and tertiary alcohols by regio‐ and/or stereospecifically adding water to carbon‐carbon double bonds. Thereby, hydroxy groups are introduced without the need for costly cofactor recycling, and that makes this approach highly interesting on an industrial scale. Here we present the first crystal structure of a recombinant oleate hydratase originating from Elizabethkingia meningoseptica in the presence of flavin adenine dinucleotide (FAD). A structure‐based mutagenesis study targeting active site residues identified E122 and Y241 as crucial for the activation of a water molecule and for protonation of the double bond, respectively. Moreover, we also observed that two‐electron reduction of FAD results in a sevenfold increase in the substrate hydration rate. We propose the first reaction mechanism for this enzyme class that explains the requirement for the flavin cofactor and the involvement of conserved amino acid residues in this regio‐ and stereoselective hydration.  相似文献   
7.
ATR, a DNA damage signaling kinase, is required for cell cycle checkpoint regulation and detecting DNA damage caused by genotoxic factors including Al3+ ions. We analyzed the function of the HvATR gene in response to chemical clastogen-maleic acid hydrazide (MH). For this purpose, the Al-tolerant barley TILLING mutant hvatr.g was used. We described the effects of MH on the nuclear genome of hvatr.g mutant and its WT parent cv. “Sebastian”, showing that the genotoxic effect measured by TUNEL test and frequency of cells with micronuclei was much stronger in hvatr.g than in WT. MH caused a significant decrease in the mitotic activity of root cells in both genotypes, however this effect was significantly stronger in “Sebastian”. The impact of MH on the roots cell cycle, analyzed using flow cytometry, showed no differences between the mutant and WT.  相似文献   
8.
9.
10.
A novel polyurethane‐based foam‐like adhesive reinforced with nanosized hydroxyapatite (HA) particles was developed and investigated for bone‐to‐bone bonding applications in terms of mechanical adhesion and biocompatibility. The adhesive has a hierarchical structure with HA particles at the nanoscale level and pores at the micro‐scale level. This adhesive was tested mechanically in the three principal loading modes anticipated: shear, tension, and compression. Standard testing procedures were used when available. Tensile strength of primed adhesive showed a four‐fold increase in adhesion on unmodified bone and a nearly two‐fold increase in adhesion to primed bone as compared with the conventional bone cement. Biocompatibility was initially assessed in vitro using cell culture tests, which showed positive interaction with the adhesive. Then, a second biocompatibility test was performed using Xenopus laevis limbs to assess an in vivo response. The results indicated that the adhesive material produces a normal response consistent with control specimens. However, long‐term observations and tests with additional species are needed to demonstrate full biocompatibility. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号