首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
化学工业   10篇
轻工业   18篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2002年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
For determining trypsin inhibitor activity (TIA) in soy products, the American Oil Chemists' Society (AOCS) Method Ba 12-75 has been used. It measures differences in absorbance at 410 nm of bovine trypsin activity toward a synthetic substrate (-benzoyl-DL-arginine-p-nitroanilide) in the absence and presence of an inhibitor. Recently, a significantly improved method was developed (JAOCS, 2019, 96:635–645), featuring 5 mL of total assay volume, enzyme-last sequence, and single inhibitor level in duplicate. It is proposed as the AOCS Method Ba 12a-2020. As a part of the AOCS method approval process, a collaborative study involving 12 international laboratories was conducted to evaluate the performance of the proposed method. The study involved measuring TIA in 10 selected test samples plus a blind duplicate. They included soybeans, pulses, cereals, and their processed products (flours, concentrates, and isolates). After rigorous statistical treatment of the data, only three outliers were removed from the data of two samples. Repeatability relative standard deviations (RSDr) for the 11 samples ranged from 0.99% to 5.52%. Reproducibility RSD (RSDR) ranged from 7.07% to 22.92%, with seven samples having RSDR around 10% or less. The remaining four samples had very low TIA, and their RSDR values ranged from 13.34% to 22.92%. The study has demonstrated reliable performance of the proposed AOCS method. Several collaborators carried out additional experiments addressing some aspects of the method, leading to further refinements. The proposed method is undergoing evaluation by the AOCS Uniform Methods Committee for adoption as an Official Method for measuring TIA in various legume and grain products.  相似文献   
2.
3.
4.
In this study, the effects of solid-state fermentation (SSF), including strain (Aspergillus niger NRRL 334 and A. oryzae NRRL 5590) and fermentation time (24, 48, and 72 h) on the nutritional value of cold-pressed (CP) and hexane-extracted (HE) canola meals were examined. SSF increased the protein content of both types of meals (from ~36% to ~40%) while reducing the oil content of CP meals (from ~12% to 9%). There was a significant reduction (~80%) in the phytic acid content of both types of meals after fermentation using either fungi. Overall, fermented samples showed a decrease in the total phenolic content from 2.7–3.1 to ~1.0 mg gallic acid equivalents (GAE)/g dry meal (DM) (a ~65% reduction), of which specifically the HE meal fermented with A. niger sample had the greatest decrease from 3.1 to 0.6 mg GAE/g DM (~81% reduction). Seventy-two hours of fermentation decreased the in vitro protein digestibility (IVPD) of A. oryzae fermented meals. In contrast, a shorter fermentation time (24 h) increased the IVPD for most samples as compared to the controls (from ~72%–73% to 77%–81%), with the exception of the CP meal fermented with A. niger which had similar IVPD at all fermentation times. Overall, the changes indicate that SSF using A. niger or A. oryzae can be useful to positively modify the composition of different canola meals and improve their nutritional value by significantly increasing the protein content, decreasing the levels of antinutrients, while only slightly reducing IVPD.  相似文献   
5.
Among the commercially cultivated Brassicaceae (Cruciferae) plants, Brassica juncea, Brassica napus, Brassica rapa, and Sinapis alba store significant amounts of oil and protein in the seed. At present, Brassica seed proteins are primarily used for livestock feeding based on the nutritional value. The point of curiosity is whether the present knowledge on the protein structure, biochemical characteristics, nutritive value, and the recovery processes are inadequate to develop Brassica proteins into a usable plant protein source or these proteins are of substandard for uses beyond animal nutrition applications. Cruciferin (11S) and napin (2S) are the predominant storage proteins of Brassicaceae seeds that contribute to different properties and functions. A gamut of information is available on the chemistry, nutritional value, as well as the functionality in foods, and associated non-protein components of canola/rapeseed storage proteins. The intention of this article is to critically review what is known about the predominant storage proteins of commercially produced Brassicaceae seeds relative to the above aspects and identify the knowledge gaps.  相似文献   
6.
Defatted canola meal was extracted with 95% (v/v) ethanol at 80 °C. The extract was fractionated on a Sephadex LH-20 column using methanol as eluate. Seven major fractions were isolated according to UV absorption, content of phenolics and sugars. Antioxidant activity of these fractions was evaluated in a β-carotenelinoleate model system. Fraction IV showed the best antioxidant effect by exhibiting the highest preventive activity against the bleaching of β-carotene. Further separation of this fraction on TLC indicated that it contains several compounds including phenolic acids and trihydroxy phenolic compounds such as flavones and flavonols.  相似文献   
7.
Preparation of n-3 polyunsaturated fatty acid (PUFA) concentrates from seal blubber oil (SBO) and menhaden oil (MHO) in the form of acylglycerols was carried out by hydrolysis with a number of commercial microbial lipases. The lipases tested were Aspergillus niger, Candida cylindracea (CC), Chromobacterium viscosum, Geotrichum candidum, Mucor miehei, Pseudomonas sp., Rhizopus oryzae, and Rhizopus niveus. After lipase-assisted hydrolysis of oils, free fatty acids were removed, and fatty acid composition of the mixture containing mono-, di-, and triacylglycerols was determined. All lipases were effective in increasing the n-3 PUFA content of the remaining acylglycerols of both SBO and MHO. The highest concentration of n-3 PUFA was provided by CC lipase; 43.5% in SBO [9.75% eicosapentaenoic acid (EPA), 8.61% docosapentaenoic acid (DPA), and 24.0% docosahexaenoic acid (DHA)] and 44.1% in MHO (18.5% EPA, 3.62% DPA, and 17.3% DHA) after 40 h of hydrolysis. Thus, CC lipase appears to be most suitable for preparation of n-3 PUFA in the acylglycerol form from marine oils.  相似文献   
8.
A study was conducted to determine bioactivities of flaxseed (Linum usitatissimum L.; variety: Valour) proteins and their hydrolysates. Isolated flaxseed proteins were treated with Flavourzyme® at different levels of enzyme to substrate ratio (E/S) and hydrolysis time. The unhydrolysed proteins and hydrolysates were studied for angiotensin I-converting enzyme inhibiting (ACEI) activity, hydroxyl radical (OH·) scavenging activity and bile acid binding ability. Flavourzyme catalysed hydrolysis generated hydrolysates with a 11.94–70.62% degree of hydrolysis (DH). The hydrolysates (0.67 mg/ml) had strong ACEI activity (71.59–88.29%). The maximum ACEI activity containing hydrolysate exhibited an IC50 of 0.07 mg/ml (E/S: 1.5; Time: 12 h; DH: 11.94%). The OH· scavenging activity of the hydrolysates (0.5 mg/ml) was 12.48–22.08% with an IC50 of 1.56 mg/ml in the sample possessing maximum activity (E/S: 47.5; Time 0.7 h; DH: 24.63%). Both these activities were greater in hydrolysates with lower DH and higher peptide chain length (PCL) than those with higher DH and lower PCL. Hydrolysed flaxseed proteins (0.67 mg/ml) had no bile acid binding ability. The unhydrolysed proteins had no ACEI or OH· scavenging activity but demonstrated bile acid binding ability.  相似文献   
9.
Phenolic antioxidants.   总被引:12,自引:0,他引:12  
  相似文献   
10.
BACKGROUND: Chickpea (Cicer arietinum L.) seeds are a good source of protein that has potential applications in new product formulation and fortification. The main objectives of this study were to analyse the physicochemical, thermal and functional properties of chickpea protein isolates (CPIs) and compare them with those of soy (SPI) and pea (PPI) protein isolates. RESULTS: Extracted CPIs had mean protein contents of 728–853 g kg?1 (dry weight basis). Analysis of their deconvoluted Fourier transform infrared spectra gave secondary structure estimates of 25.6–32.7% α‐helices, 32.5–40.4% β‐sheets, 13.8–18.9% turns and 16.3–19.2% disordered structures. CPIs from CDC Xena, among Kabuli varieties, and Myles, among Desi varieties, as well as SPI had the highest water‐holding and oil absorption capacities. The emulsifying properties of Kabuli CPIs were superior to those of PPI and Desi CPIs and as good as those of SPI. The heat‐induced gelation properties of CPIs showed a minimum protein concentration required to form a gel structure ranging from 100 to 140 g L?1. Denaturation temperatures and enthalpies of CPIs ranged from 89.0 to 92.0 °C and from 2.4 to 4.0 J g?1 respectively. CONCLUSION: The results suggest that most physicochemical, thermal and functional properties of CPIs compare favourably with those of SPI and are better than those of PPI. Hence CPI may be suitable as a high‐quality substitute for SPI in food applications. Copyright © 2011 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号