首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
综合类   1篇
化学工业   1篇
建筑科学   1篇
冶金工业   1篇
  2011年   3篇
  2005年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.  相似文献   
2.
This research examines the compressive strength of mortar and how the filler effect and pozzolanic reaction of ground palm oil fuel ash (POFA) contribute to this strength. POFA and river sand were ground to three different particle sizes and used to replace Type I Portland cement at 10–40% by weight of binder to cast the mortar. The compressive strengths of ground POFA and ground river sand mortars were determined at various ages between 7 and 90 days. The results showed that the compressive strength of mortar due to the filler effect of ground river sand was nearly constant during the 7–90 day period for a specified replacement rate of cement. However, the compressive strength of mortar due to the filler effect tended to increase slightly with increased cement replacement. The pozzolanic reaction of ground POFA increased with increasing particle fineness of ground POFA, replacement rate of cement, and age of the mortar. The compressive strength contribution from the pozzolanic reaction of ground POFA was much more pronounced than the contribution from the filler effect when the smallest sizes of both materials were considered.  相似文献   
3.
This research is to study the effect of particle size of fly ash on packing effect and pozzolanic reaction of mortar when 20% of fly ash is used to replace Portland cement type I. Both effects can be determined by using fly ash and insoluble material which have almost the same particle size to replace Portland cement type I. Normally, the compressive strength of fly ash mortar is contributed from hydration reaction, packing effect, and pozzolanic reaction. For mortar mixed with insoluble material, the compressive strength is due to hydration reaction and packing effect. Thus, compressive strength due to pozzolanic reaction can be determined from the difference in compressive strength between fly ash mortar and insoluble material mortar. The results show that the strength activity index of fly ash mortar depends on the median particle size of fly ash and curing ages of mortar samples. At early ages, the strength activity index of fly ash mortar due to packing effect is higher than that due to pozzolanic reaction. At the ages of 3 to 90 days, the difference in strength activity index due to packing effect of fly ashes with median particle size of 2.7 and 160 μm is almost constant about 22% of the strength of standard mortar (STD). The differences in strength activity index due to pozzolanic reaction of fly ashes with median particle size of 2.7 and 160 μm are 3%, 20%, and 27%, respectively, at the ages of 3, 28, and 90 days.  相似文献   
4.
The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%?40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号