首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   12篇
  国内免费   2篇
化学工业   47篇
金属工艺   4篇
机械仪表   5篇
建筑科学   3篇
能源动力   1篇
轻工业   3篇
水利工程   2篇
石油天然气   5篇
无线电   12篇
一般工业技术   40篇
冶金工业   14篇
自动化技术   24篇
  2023年   5篇
  2022年   6篇
  2021年   7篇
  2020年   6篇
  2019年   5篇
  2018年   16篇
  2017年   9篇
  2016年   11篇
  2015年   6篇
  2014年   7篇
  2013年   20篇
  2012年   10篇
  2011年   16篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1977年   1篇
  1976年   2篇
  1971年   1篇
排序方式: 共有160条查询结果,搜索用时 0 毫秒
1.
BACKGROUND: Over the past several decades methyl tert‐butyl ether (MTBE) as additive to gasoline, intended to either boost ratings of fuel or to reduce air pollution, has been accepted worldwide. Since MTBE has high water solubility, the occurrence of fuel spills or leaks from underground storage tanks or transferring pipeline has led to the contamination of natural waters. In this study the degradation of aqueous MTBE at relatively high concentrations was investigated by a UV‐visible/ZnO/H2O2 photocatalytic process. The effects of important operational parameters such as pH, amount of H2O2, catalyst loading and irradiation time were also investigated. Concentration of MTBE and intermediates such as tert‐butyl formate and tert‐butyl alcohol were measured. RESULTS: Time required for complete degradation increased from 20 to 150 min when the initial concentration was increased from 10 to 500 mg L?1. The first‐order rate constants for degradation of MTBE were estimated to be 0.183–0.022 min?1 as the concentration increased from 10 to 500 mg L?1. Study of the overall mineralization monitored by total organic carbon analysis showed that at an initial concentration of 100 mg L?1 MTBE complete mineralization was obtained after 100 min under UV‐visible/ZnO/H2O2 photocatalysis. CONCLUSION: The data presented in this paper clearly indicated that UV‐visible/ZnO/O2 as an advanced oxidation process provides an efficient treatment alternative for the remediation of MTBE‐contaminated waters. Copyright © 2008 Society of Chemical Industry  相似文献   
2.
Deposition of zinc oxide films from aqueous solutions containing complex Zn2+ ions on soda-lime substrates were studied by two-stage chemical deposition (TSCD) process. It was shown that the film thickness can be controlled by the number of dipping stages. Nano-layers were produced with less than nine times dipping stages. Greater dipping numbers resulted in film thickness exceeding 100 nm. The growth rate obeyed double-stage zeroth order with respect to the concentration and first order with respect to the temperature. This rate was proportional to the difference between the temperature of the hot water and the substrate. Overall activation energy of 17.20 ± 0.42 kJ mol−1 and frequency factor of 2.81 ± 0.07 μm s−1 was determined for ZnO deposition. These values were attributed to two resistances. One resistance corresponded with film heat transfer mechanism. The other was attributed to species attachment to the solid substrate. A modification to the diffuse-interface kinetic model was devised for explanation of the latter. EDAX (electron dispersive elemental analysis), XRD (X-ray diffraction) and SEM (scanning electron microscopy) were used to characterize the layer formed. These methods showed that the product consisted solely of pure elliptical ZnO grains.  相似文献   
3.
Carbon-coated SiC@C nanocapsules (NCs) with a hexagonal platelet-like morphology were fabricated by a simple direct current (DC) arc-discharge plasma method.The SiC@C NCs were monocrystalline,120-150 nm in size,and approximately 50 nm thick.The formation of the as-prepared SiC@C NCs included nucleation of truncated octahedral SiC seeds and subsequent anisotropic growth of the seeds into hexagonal nanoplatelets in a carbon-rich atmosphere.The disordered carbon layers on the SiC@C NCs were converted into SiO2 shells of SiC@SiO2 NCs by heat treatment at 650 ℃ in air,during which the shape and inherent characteristics of the crystalline SiC core were obtained.The interface evolution from carbon to SiO2 shells endowed the SiC@SiO2 NCs with enhanced photocatalytic activity due to the hydrophilic and transparent nature of the SiO2 shell,as well as to the photosensitive SiC nanocrystals.The band gap of the nanostructured SiC core was determined to be 2.70 eV.The SiC@SiO2 NCs degraded approximately 95% of methylene blue in 160 min under visible light irradiation.  相似文献   
4.
5.
6.
Condition-based maintenance (CBM) is generally considered an attractive maintenance policy for a single component: it uses the operating condition of the component to predict a failure event and therefore tries to avoid any unplanned downtime and unnecessary maintenance activities. However, operations managers tend to be much more interested in optimising the performance of the entire asset-system, where the grouping of maintenance activities and the availability of maintenance workers may play a role. Therefore, this paper focuses on the impact of using either CBM or age-based replacement (ABR) in serial and parallel multi-component systems (1) without worker constraints, (2) with a single internal maintenance worker, and (3) with external maintenance workers with a significant response time. With an internal maintenance worker, the sequential execution of maintenance activities prevents efficiency gains in the serial configuration and here CBM performs better. Also in the parallel configurations, the efficiency under CBM is generally better than under ABR. However, with external maintenance workers, CBM is not able to group maintenance activities as well as ABR, which results in a lower efficiency in the serial configuration. CBM performs better than ABR with respect to total maintenance costs, while ABR results in a smoother maintenance plan.  相似文献   
7.
Cu50?xCox Zr50 (x = 0, 0.5, 1, 2, 3, 4 and 5 at.%) alloys were cast in a cylindrical copper mold by a suction casting device. In order to investigate the thermal behavior of the as-cast rods, the samples were heated from 313 to 573 K and then cooled down to about 253 K. The structure of the samples was studied by X-ray diffraction and optical microscopy. Thermal cycling measurements were also done for alloys with 2, 3, 4 and 5 at.% cobalt. It was found that increasing the cobalt content decreases martensite (Ms) and austenite (As) start temperatures, while it increases the temperature region in which austenite is stable. Thermal cycling measurements revealed that by increasing the number of cycles, the austenite start temperature increases while martensite start temperature shifts to lower temperatures.  相似文献   
8.
Although parking revenue is a principal source of income, supply of parking infrastructure at airports is based largely on expected needs. Although that is a rational basis, high investment costs and management fees are requiring developers and financiers to carefully analyze investment risks. This paper focuses on sources of investment risk in airport parking infrastructure development and discusses the application of Monte Carlo simulation to estimate and understand the impacts of cash flow uncertainties on project feasibility. It is shown that cost overruns, which are common in construction project development, have the most significant impact on return risk.  相似文献   
9.
M. Vaezi  M. Moghiman 《Fuel》2011,90(2):878-885
Combustion of heavy fuel oils is a major source of production of particulate emissions and ash, as well as considerable volumes of SOx and NOx. Gasification is a technologically advanced and environmentally friendly process of disposing heavy fuel oils by converting them into clean combustible gas products. Thermochemical equilibrium modeling is the basis of an original numerical method implemented in this study to predict the performance of a heavy fuel oil gasifier. The model combines both the chemical and thermodynamic equilibriums of the global gasification reaction in order to predict the final syngas species distribution. Having obtained the composition of the produced syngas, various characteristics of the gasification process can be determined; they include the H2:CO ratio, process temperature, and heating value of the produced syngas, as well as the cold gas efficiency and carbon conversion efficiency of the process. The influence of the equivalence ratio, oxygen enrichment (the amount of oxygen available in the gasification agent), and pressure on the gasification characteristics is analyzed. The results of simulations are compared with reported experimental measurements through which the numerical model is validated. The detailed investigation performed in the course of this study reveals that the heavy oil gasification is a feasible process that can be utilized to generate a syngas for various industrial applications.  相似文献   
10.
A series of blocked diisocyanates has been synthesized from toluene diisocyante (TDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), 4,4′‐diphenylmethane diisocyanate (MDI) and 2‐butoxyethanol. The synthesis of blocked diisocyanate adducts was confirmed by Fourier transform infrared, 1H NMR, electron impact mass spectrometry and nitrogen analysis. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and carbon dioxide evolution were used to determine the minimum de‐blocking temperatures. De‐blocking temperatures determined by these three techniques were found to be in the order DSC > TGA > CO2 evolution. The effect of different metal catalysts on thermal de‐blocking reaction of the blocked diisocyanates was studied, using the carbon dioxide evolution method. It was found that iron(III) oxide has the maximum catalytic activity on de‐blocking. The solubility of the blocked diisocyanate adducts was determined in different solvents. The study revealed that at 30 °C blocked IPDI and HDI adducts show better solubility than adducts based on TDI and MDI. Isocyanate‐terminated prepolymers of blocked diisocyanates and hydroxyl‐terminated polybutadiene (HTPB) were prepared. The storage stability and gelation times of the prepolymers were studied. Results showed that all the diisocyanate‐HTPB compositions are stable at 50 °C for more than three months. However, aliphatic diisocyanate‐HTPB compositions require greater gelation time than aromatic diisocyanate‐HTPB compositions at their respective de‐blocking temperatures. Copyright © 2007 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号