首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   4篇
化学工业   4篇
轻工业   6篇
一般工业技术   2篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
The voltage-dependent anion channel 1 (VDAC1) is a crucial mitochondrial transporter that controls the flow of ions and respiratory metabolites entering or exiting mitochondria. As a voltage-gated channel, VDAC1 can switch between a high-conducting “open” state and a low-conducting “closed” state emerging at high transmembrane (TM) potentials. Although cell homeostasis depends on channel gating to regulate the transport of ions and metabolites, structural hallmarks characterizing the closed states remain unknown. Here, we performed microsecond accelerated molecular dynamics to highlight a vast region of VDAC1 conformational landscape accessible at typical voltages known to promote closure. Conformers exhibiting durable subconducting properties inherent to closed states were identified. In all cases, the low conductance was due to the particular positioning of an unfolded part of the N-terminus, which obstructed the channel pore. While the N-terminal tail was found to be sensitive to voltage orientation, our models suggest that stable low-conducting states of VDAC1 predominantly take place from disordered events and do not result from the displacement of a voltage sensor or a significant change in the pore. In addition, our results were consistent with conductance jumps observed experimentally and corroborated a recent study describing entropy as a key factor for VDAC gating.  相似文献   
3.
4.
5.
The effect of freezing treatments on sweet dough was studied. The dough was frozen at ?20 °C, ?30 °C and ?40 °C in air-blast freezer cabinet and by immersion in liquid nitrogen. The yeast viability, gassing power, dough volume and dough network integrity from fresh and thawed sweet doughs were assessed. The results showed that both parameters depend on the freezing rate, which controls ice crystals size and location. Dough volume loss after freezing was attributed to reduced yeast fermentative activity and gluten network alteration in frozen dough. Fermentative activity reduced significantly in frozen dough using liquid nitrogen, causing 70% decrease on yeast population. Gluten integrity seemed to be affected by slow freezing treatment, i.e. ?20 °C and ?30 °C. Gas loss was also evaluated as a decrease of 25% ± 2 in dough volume. A correlation was observed between the freezing rate and osmotic pressure effects which influence strongly the yeast viability.  相似文献   
6.
The aim of the present study was to investigate the effect of yeast content and frozen storage (9 weeks at −40 °C) on the structural and rheological parameters, and fermentative activity of frozen sweet dough. Two types of dough were studied (to estimate dough shelf life): simple yeasted dough (SY) and double yeasted dough (DY). Fermentative activity (yeast viability, gassing power, and dough volume), rheological and textural parameters were assessed for frozen sweet doughs.These effects were explored by different and complementary methods: Fourier transform infrared (FTIR), dynamic rheology, texture profile analysis (TPA) and differential scanning calorimetry (DSC).The data showed that the longer the frozen storage time at −40 °C, the higher the decreased of frozen sweet dough quality. The rheological attributes such as hardness, ΔS, springiness, tan δ and yeast activity declined significantly during frozen storage. This modification led to lower specific volume of frozen sweet dough during proofing.The observed changes of the frozen sweet doughs rheological properties after thawing may be attributed to the damage on the gluten cross-linking, mainly produced by the ice crystallization during frozen storage. The storage effect was particularly concentrated in the first 27 days of storage.  相似文献   
7.
Histones are widely recognized as pro-inflammatory mediators upon their release from the nucleus into the extracellular space. However, their impact on endothelial cell immunogenicity is unknown. Endothelial cells, Human Microvascular Endothelial cells 1 (HMEC1), have been exposed to recombinant histones in order to study their effect on the endothelial phenotype. We then studied the differentiation of CD4+-T lymphocytes subpopulations after three days of interaction with endothelial cells in vitro and observed that histone-treated endothelial cells differentiate a suppressive FoxP3+ T regulator subpopulation that expressed Human Leucocyte Antigen DR (HLA-DR) and Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA4). Toll-Like Receptor 4 (TLR4) inhibition significantly decreased the expansion of these Treg cells. Moreover, blockade of Interleukin (IL)-6 and Intercellular Adhesion Molecule (ICAM)-1 in cocultures significantly decreased the expansion of Tregs, suggesting an IL-6 and ICAM-1 dependent pathway. Thus, beyond their inflammatory effects, extracellular histones may induce an increase of immunosuppressive Treg population via their action on endothelial cells. Further studies are needed to evaluate the impact on immunosuppression of an increase of peripheral suppressive Treg via endothelial cell activation by histones in vivo.  相似文献   
8.
The interactions of β-lactoglobulin (BLG) with total Acacia gum (TAG) in presence of quercetin have been investigated in aqueous solutions at pH 4.2 and 25 °C. Isothermal titration calorimetry (ITC) has been used to determine the type and magnitude of the energies involved in the complexation process. Dynamic light scattering (DLS), electrophoretic mobility (μE), turbidity measurements (τ), optical microscopy and Fourier transform infrared spectroscopy in total attenuated reflection mode (ATR-FTIR) were used as complementary methods to better understand the sum of complicated phenomena at the origin of thermodynamic behaviour.  相似文献   
9.
The aim of this study was to investigate chitosan film behavior during microwave heating for 10 different heating times from 0 to 40 min. Chitosan films were produced by casting. Their structure and properties were investigated with several techniques, including Fourier transform infrared spectroscopy and differential scanning calorimetry, but also by the measurement of the film color and the mechanical properties or by the study of the rheological properties of the rehydrated films. An original technique of gas chromatography (electronic nose) was used to analyze the film odor and highlight the presence of volatile compounds related to the Maillard reaction occurring during film heating. The results show that structural modifications occurred in two steps; this affected the polymer structure, such as the crystallization and chain scission. The appearance of the neoformed compounds was also observed and must be controlled to guarantee the safety of this food‐contact packaging material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40779.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号