首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   9篇
  国内免费   1篇
化学工业   10篇
金属工艺   2篇
能源动力   1篇
无线电   20篇
一般工业技术   19篇
冶金工业   1篇
自动化技术   1篇
  2023年   1篇
  2021年   1篇
  2020年   7篇
  2019年   5篇
  2018年   5篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1993年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
1.
Numerous applications, from molecular electronics to super‐strong composites, have been suggested for carbon nanotubes. Despite this promise, difficulty in assembling raw carbon nanotubes into functional structures is a deterrent for applications. In contrast, biological materials have evolved to self‐assemble, and the lessons of their self‐assembly can be applied to synthetic materials such as carbon nanotubes. Here we show that single‐walled carbon nanotubes, coated with a designed amphiphilic peptide, can be assembled into ordered hierarchical structures. This novel methodology offers a new route for controlling the physical properties of nanotube systems at all length scales from the nano‐ to the macroscale. Moreover, this technique is not limited to assembling carbon nanotubes, and could be modified to serve as a general procedure for controllably assembling other nanostructures into functional materials.  相似文献   
2.
3.
4.
5.
A simple fiber spinning method used to fabricate elastomeric composite fibers with outstanding mechanical performance is demonstrated. By taking advantage of the large size of as‐prepared graphene oxide sheets (in the order of tens of micrometers) and their liquid crystalline behavior, elastomeric composite fibers with outstanding low strain properties have been fabricated without compromising their high strain properties. For example, the modulus and yield stress of the parent elastomer improved by 80‐ and 40‐fold, respectively, while maintaining the high extensibility of ~400% strain inherent to the parent elastomer. This outstanding mechanical performance was shown to be dependent upon the GO sheet size. Insights into how both the GO sheet size dimension and dispersion parameters influence the mechanical behavior at various applied strains are discussed.  相似文献   
6.
Poly(styrene‐β‐isobutylene‐β‐styrene)‐poly(3‐hexylthiophene) (SIBS‐P3HT) conducting composite fibers are successfully produced using a continuous flow approach. Composite fibers are stiffer than SIBS fibers and able to withstand strains of up 975% before breaking. These composite fibers exhibit interesting reversible mechanical and electrical characteristics, which are applied to demonstrate their strain gauging capabilities. This will facilitate their potential applications in strain sensing or elastic electrodes. Here, the fabrication and characterization of highly stretchable electrically conducting SIBS‐P3HT fibers using a solvent/non‐solvent wet‐spinning technique is reported. This fabrication method combines the processability of conducting SIBS‐P3HT blends with wet‐spinning, resulting in fibers that could be easily spun up to several meters long. The resulting composite fiber materials exhibit an increased stiffness (higher Young’s modulus) but lower ductility compared to SIBS fibers. The fibers’ reversible mechanical and electrical characteristics are applied to demonstrate their strain gauging capabilities.  相似文献   
7.
8.
In this study, pulsed laser ablation technique, also known as pulsed laser deposition (PLD), is used to design and grow zinc oxide (ZnO) nanostructures (nanoworms, nanowalls, and nanorods) by template/seeding approach for gas-sensing applications. Conventionally, ZnO nanostructures used for gas-sensing have been usually prepared via chemical route, where the 3D/2D nanostructures are chemically synthesized and subsequently plated on an appropriate substrate. However, using pulsed laser ablation technique, the ZnO nanostructures are structurally designed and grown directly on a substrate using a two-step temperature-pressure seeding approach. This approach has been optimized to design various ZnO nanostructures by understanding the effect of substrate temperature in the 300-750°C range under O2 gas pressure from 10-mTorr to 10 Torr. Using a thin ZnO seed layer as template that is deposited first at substrate temperature of ~300°C at background oxygen pressure of 10 mTorr on Si(100), ZnO nanostructures, such as nanoworms, nanowalls, and nanorods (with secondary flower-like growth) were grown at substrate temperatures and oxygen background pressures of (550°C and 2 Torr), (550°C and 0.5 Torr), and (650°C and 2 Torr), respectively. The morphology and the optical properties of ZnO nanostructures were examined by Scanning Electron Microscope (SEM-EDX), X-ray Diffraction (XRD), and photoluminescence (PL). The PLD-grown ZnO nanostructures are single-crystals and are highly oriented in the c-axis. The vapor-solid (VS) model is proposed to be responsible for the growth of ZnO nanostructures by PLD process. Furthermore, the ZnO nanowall structure is a very promising nanostructure due to its very high surface-to-volume ratio. Although ZnO nanowalls have been grown by other methods for sensor application, to this date, only a very few ZnO nanowalls have been grown by PLD for this purpose. In this regard, ZnO nanowall structures are deposited by PLD on an Al2O3 test sensor and assessed for their responses to CO and ethanol gases at 50 ppm, where good responses were observed at 350 and 400°C, respectively. The PLD-grown ZnO nanostructures are very excellent materials for potential applications such as in dye-sensitized solar cells, perovskite solar cells and biological and gas sensors.  相似文献   
9.
The integration of nanomaterials with high conductivity into stretchable polymer fibers can achieve novel functionalities such as sensing physical deformations. With a metallic conductivity that exceeds other solution‐processed nanomaterials, 2D titanium carbide MXene is an attractive material to produce conducting and stretchable fibers. Here, a scalable wet‐spinning technique is used to produce Ti3C2Tx MXene/polyurethane (PU) composite fibers that show both conductivity and high stretchability. The conductivity at a very low percolation threshold of ≈1 wt% is demonstrated, which is lower than the previously reported values for MXene‐based polymer composites. When used as a strain sensor, the MXene/PU composite fibers show a high gauge factor of ≈12900 (≈238 at 50% strain) and a large sensing strain of ≈152%. The cyclic strain sensing performance is further improved by producing fibers with MXene/PU sheath and pure PU core using a coaxial wet‐spinning process. Using a commercial‐scale knitting machine, MXene/PU fibers are knitted into a one‐piece elbow sleeve, which can track various movements of the wearer's elbow. This study establishes fundamental insights into the behavior of MXene in elastomeric composites and presents strategies to achieve MXene‐based fibers and textiles with strain sensing properties suitable for applications in health, sports, and entertainment.  相似文献   
10.
Fiber‐shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one‐step wet‐spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3C2Tx MXene nanosheets and poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm?1, which is about five times higher than other reported Ti3C2Tx MXene‐based fibers (up to ≈290 S cm?1). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm?3 at 5 mV s?1) and an excellent rate performance (≈375.2 F cm?3 at 1000 mV s?1). When assembled into a free‐standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm?3 and ≈8249 mW cm?3, respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene‐based fiber electrodes and their scalable production for fiber‐based energy storage applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号