首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   4篇
  国内免费   2篇
化学工业   24篇
金属工艺   1篇
机械仪表   1篇
建筑科学   3篇
能源动力   5篇
轻工业   6篇
无线电   16篇
一般工业技术   13篇
冶金工业   2篇
自动化技术   7篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   4篇
  2012年   4篇
  2011年   8篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
The electrochemical behaviour of Al, Al—In and Al–Ga–In alloys in 0.6 m NaCl solutions with and without Zn2+ was investigated. The study was performed by means of open circuit potential, potentiodynamic polarization, potentiostatic current-time and electrochemical impedance spectroscopy measurements as well as by SEM-EDAX examination. It was found that the Al—In alloy exhibits the highest negative open circuit potential in 0.6 m NaCl and the corrosion resistance of the tested electrodes decreases in the following order: Al > Al–Ga–In > Al—In. The greater activity of the Al—In alloy was interpreted on the basis of the autocatalytic attack by indium. The potentiostatic current–time measurements in Zn2+ containing electrolyte at potentials above the pitting potential revealed that Zn2+ has an insignificant influence on the Al electrode, while it enhances the corrosion of the Al–Ga–In alloy and improves the attack morphology of the Al—In alloy. Furthermore, the impedance spectra recorded under open circuit conditions showed a decrease in the polarization resistance of Al—In and Al–Ga–In alloys in presence of Zn2+ indicating the activating effect of Zn2+ ions.  相似文献   
2.
In this study electrochemical performance of Al and some of its alloys (Al-Zn, Al-Mg and Al-Mn) anodes vs MnO2 cathode were carried out in alkaline solution. The results show that the Al-Zn alloy anode has the best cell capacity among the other alloys. Cell capacity values go in the order Al-Zn>Al-Mg>Al>Al-Mn. This result is probably related to the nature of passive films formed on the surface of the alloys which examined by scanning electron microscopy (SEM). SEM morphologies of Al and its alloys showed coarse grains of passive films formed on the surface of these anode materials while Al-Mn morphology shows a needle-like structure.Electrolytic manganese dioxide (EMD) produced by electrodepositing on platinum anode from liquor resulting from reduction of low grade pyrolusite ore (β-MnO2) by sulfur slag was characterized as cathode in alkaline Zn-MnO2 batteries. Ore produced sample (EMD1) was performed well in comparison with EMD standard (EMD2) (commercial battery grade electrolytic manganese dioxide, TOSOH-Hellas GH-S). SEM morphology of Zn anode after cell reaction was carried out and showed that Zn anode has fine grains of passive film on its surface.  相似文献   
3.
This paper is a study on the problem of path planning for two robots on a grid. We consider the objective of minimizing the maximum path length which corresponds to minimizing the arrival time of the last robot at its goal position. We propose an optimal algorithm that solves the problem in linear time with respect to the size of the grid. We show that the algorithm is complete; meaning that it is sure to find an optimal solution or report if any does not exist.  相似文献   
4.
The electroreduction of 0.5 M TaF5 on Au(1 1 1) and on polycrystalline gold substrates was investigated at room temperature in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide, [Py1,4]TFSA, by cyclic voltammetry, in situ scanning tunneling microscopy (STM) and electrochemical quartz crystal microbalance (EQCM). The electrochemical reduction of TaF5 in the employed ionic liquid occurs in several steps. The first redox process is attributed to the reduction of TaF5 to TaF3, which likely occurs in the solution, as EQCM indicates no mass change. The electrodeposition of tantalum occurs only in a very narrow potential window and is preceded by the formation of various non-stoichiometric tantalum subhalides. Attempts to deposit micrometer thick tantalum layers at room temperature fail, presumably because of kinetic reasons.  相似文献   
5.
Arbitrary optical waveforms have been successfully generated by Fourier synthesis using three independent continuous-wave semiconductor lasers. The lasers were phase-locked to each other using a nonlinear phase-locking scheme. By controlling their amplitude and phase, triangular and trapezoidal waveforms as well as ordinary pulses have been generated  相似文献   
6.
The use of arsenic (As) contaminated groundwater for irrigation of crops has resulted in elevated concentrations of arsenic in agricultural soils in Bangladesh, West Bengal (India), and elsewhere. Paddy rice (Oryza sativa L.) is the main agricultural crop grown in the arsenic-affected areas of Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown those soils. A greenhouse study was conducted to examine the effects of arsenic-contaminated irrigation water on the growth of rice and uptake and speciation of arsenic. Treatments of the greenhouse experiment consisted of two phosphate doses and seven different arsenate concentrations ranging from 0 to 8 mg of As L(-1) applied regularly throughout the 170-day post-transplantation growing period until plants were ready for harvesting. Increasing the concentration of arsenate in irrigation water significantly decreased plant height, grain yield, the number of filled grains, grain weight, and root biomass, while the arsenic concentrations in root, straw, and rice husk increased significantly. Concentrations of arsenic in rice grain did not exceed the food hygiene concentration limit (1.0 mg of As kg(-1) dry weight). The concentrations of arsenic in rice straw (up to 91.8 mg kg(-1) for the highest As treatment) were of the same order of magnitude as root arsenic concentrations (up to 107.5 mg kg(-1)), suggesting that arsenic can be readily translocated to the shoot. While not covered by food hygiene regulations, rice straw is used as cattle feed in many countries including Bangladesh. The high arsenic concentrations may have the potential for adverse health effects on the cattle and an increase of arsenic exposure in humans via the plant-animal-human pathway. Arsenic concentrations in rice plant parts except husk were not affected by application of phosphate. As the concentration of arsenic in the rice grain was low, arsenic speciation was performed only on rice straw to predict the risk associated with feeding contaminated straw to the cattle. Speciation of arsenic in tissues (using HPLC-ICP-MS) revealed that the predominant species present in straw was arsenate followed by arsenite and dimethylarsinic acid (DMAA). As DMAA is only present at low concentrations, it is unlikely this will greatly alter the toxicity of arsenic present in rice.  相似文献   
7.
BACKGROUND: Sea cucumber (Stichopus vastus) is considered an underutilized resource, since only its stomach and intestines are eaten raw as salad in a few countries and the remaining parts, especially the integument rich in collagen, is discarded. Hence a valuable by‐product having potential nutraceutical and pharmaceutical applications is wasted. In the present investigation, pepsin‐solubilized collagen (PSC) from the integument of S. vastus was isolated, purified and characterized. RESULTS: Sodium dodecyl sulfate–polyacrylamide gel electrophoretic analysis showed that the purified collagen was of type I, consisting of three α1 chains of approximately 122 kDa each. The peptide map of PSC digested by V8 protease was different from that of calf skin type I collagen. Fourier transform infrared spectroscopy revealed that the triple helical structure was well preserved in isolated collagen. The denaturation temperature of PSC was 21.23 °C and showed good gel‐forming capability at pH 6.5 and 300 mmol L?1 NaCl. CONCLUSION: It is inferred that the collagen isolated from S. vastus integument has potential for use as an alternative to land‐based mammalian collagen in food, nutraceuticals and pharmaceutical industries. © 2012 Society of Chemical Industry  相似文献   
8.
BACKGROUND AND PURPOSE: Linear accelerators equipped with multileaf collimators (MLCs) are becoming more common and are widely available from most commercial manufacturers. There is a need to ensure they retain their commissioning specification using a preventative maintenance and quality control (QC) programme. This paper considers the design criteria of the Philips MLC which are important to the production of a comprehensive quality control programme. MATERIALS AND METHODS: The specific QC problems related to MLCs are identified as the positional accuracy of the leaves and their relationship to the back-up collimators, leakage considerations, the relationship of X-ray to light field and the influence of gravity on the positioning and leakage characteristics of the leaves. These problems are considered in relation to the general design considerations of the MLC, and methods of performing routine quality control checks are discussed. RESULTS AND CONCLUSIONS: The introduction of MLCs into clinical use results in new QC procedures being developed but it can be concluded that for the Philips MLC only an extra 30 min of QC time is needed per month and that its use has added little to the general down-time of this department.  相似文献   
9.
Imidazo-fused heterocycles are used as anticancer agents. In this study, some novel imidazo[2,1-b]thiazoles were synthesized from thiohydantoins and α-bromoketones in good yields. This method has the advantages of simple operation, high yields, and mild reaction conditions and uses less toxic and low-cost chemical reagents.  相似文献   
10.
Objective: The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan.

Methods: Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined.

Results: Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24?h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared from quaternized aromatic derivatives of chitosan. In vivo data showed significantly higher insulin intestinal absorption in nanoparticles prepared from methylated N-(4-N, N-dimethylaminobenzyl) chitosan nanoparticles compared to trimethyl chitosan.

Conclusion: These data obtained demonstrated that as the result of optimized physico-chemical properties, drug release rate, cytotoxicity profile, ex vivo permeation enhancement and increased in vivo absorption, nanoparticles prepared from N-aryl derivatives of chitosan can be considered as valuable method for the oral delivery of insulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号