首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
化学工业   2篇
轻工业   1篇
一般工业技术   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Although additive manufacturing (AM) has gained significant attention due to the advantages it offers and is currently a focus of much research, design of critical load carrying components utilizing such processes is still at its infancy. This is due to the fact that most of the load carrying components made by AM processes are subjected to cyclic loads, and fatigue behaviour of AM metals is far less understood as compared with those made by conventional methods, such as wrought and cast metals. To better understand the fatigue behaviour of AM metals, a wide range of issues that affect the behaviour in a synergistic manner must be considered. These include the effects of defects, residual stresses, surface finish, geometry and size, layer orientation, and heat treatment. Additionally, due to the multiaxial nature of the loading and/or complex geometries typically manufactured by AM processes, the stress state is often multiaxial including both normal and shear stresses. In this paper, the aforementioned effects influencing the fatigue resistance of AM parts, including torsion and multiaxial fatigue behaviour, are briefly discussed using some recently generated experimental data on Ti‐6Al‐4V by the authors.  相似文献   
2.
Master modulus curves are developed for a vinyl ester polymer with variability in its material properties. Tensile creep strains were obtained at three temperatures below the Tg through digital image correlation. A spectrum function was used to represent the viscoelastic strain response and modulus. A two-parameter Weibull distribution was used to characterize the probability distribution of the longitudinal modulus. The Weibull probability density functions of the viscoelastic modulus were obtained for each test configuration and found to be time and temperature dependent. Longitudinal modulus curves at constant probabilities were used to develop the master curves using the time–temperature superposition principle.  相似文献   
3.
4.
The effects of selected factors such as vapor‐grown carbon nanofiber (VGCNF) weight fraction, applied stress, and temperature on the viscoelastic responses (creep strain and creep compliance) of VGCNF/vinyl ester (VE) nanocomposites were studied using a central composite design (CCD). Nanocomposite test articles were fabricated by high‐shear mixing, casting, curing, and post curing in an open‐face mold under a nitrogen environment. Short‐term creep/creep recovery experiments were conducted at prescribed combinations of temperature (23.8–69.2°C), applied stress (30.2–49.8 MPa), and VGCNF weight fraction (0.00–1.00 parts of VGCNF per hundred parts of resin) determined from the CCD. Response surface models (RSMs) for predicting these viscoelastic responses were developed using the least squares method and an analysis of variance procedure. The response surface estimates indicate that increasing the VGCNF weight fraction marginally increases the creep resistance of the VGCNF/VE nanocomposite at low temperatures (i.e., 23.8–46.5°C). However, increasing the VGCNF weight fraction decreased the creep resistance of these nanocomposites for temperatures greater than 50°C. The latter response may be due to a decrease in the nanofiber‐to‐matrix adhesion as the temperature is increased. The RSMs for creep strain and creep compliance revealed the interactions between the VGCNF weight fraction, stress, and temperature on the creep behavior of thermoset polymer nanocomposites. The design of experiments approach is useful in revealing interactions between selected factors, and thus can facilitate the development of more physics‐based models. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42162.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号