首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
电工技术   1篇
化学工业   10篇
金属工艺   1篇
机械仪表   4篇
轻工业   4篇
无线电   5篇
一般工业技术   12篇
冶金工业   2篇
自动化技术   2篇
  2023年   1篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2015年   1篇
  2012年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1980年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
2.
Rice bran was incorporated into low‐density polyethylene (LDPE) at different concentrations by compounding in a twin‐screw extruder and blown into films of uniform thickness. The rice bran incorporation influenced physical, mechanical, barrier, optical, thermal properties, and biodegradation of LDPE. The mechanical and optical properties decreased as the percentage of rice bran increased. The effect of rice bran on the morphology of LDPE blends was examined using scanning electron microscopy. Oxygen transmission rate and water vapor transmission rate increased with the increased content of rice bran. Addition of rice bran did not alter the melting temperature (Tm) of the blends; however the thermal stability decreased, while glass transition temperature (Tg) increased. Kinetics of thermal degradation was also investigated and the activation energy for thermal degradation indicated that for up to 10% filler addition, the dispersion and interfacial adhesion of rice bran particles in LDPE was good. Aerobic biodegradation tests using municipal sewage sludge and biodegradation studies using specific microorganism (Streptomyces species) revealed that the films are biodegradable. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4514–4522, 2006  相似文献   
3.
The effect of pasteurization and retort processing on spectral, morphological, thermal, physico‐mechanical, barrier and optical properties of three different packaging materials viz., PP/N6/PP, PET/N6/cPP and SiOx‐PET/N6/cPP were studied. These packaging materials were packed with distilled water, which acted as a food simulant. Subsequently, these pouches were subjected to different thermal processing conditions such as pasteurization and retort processing. Both the processing techniques found to have retained the mechanical properties of all packaging materials. Water vapour transmission rate (WVTR) and oxygen transmission rate (OTR) of nylon‐based combinations were increased after processing. Gloss found to decrease invariably irrespective of the material and increases with the severity of the treatment. XRD diffractogram shows changes in crystal structure as a result of thermal processing, and SEM analysis shows the crystal fragmentation. Absorption of water by the amide group of nylon 6 was observed, which could be a reason for the increase in OTR and WVTR. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
Nano-milling is a promising technique for making miniaturized ultraprecision components. However, its underlying material removal mechanism is unclear and the accurate prediction of its performance is lacking. This study performs a systematic molecular dynamics analysis to reveal the material removal in the nano-milling of monocrystalline copper. It was found that the grooves by nano-milling, regardless of the machining parameters used, have two common features: (i) the groove top edge distortion is due to the effects of surface energy and high strain rate and (ii) the groove profile at the outlet side of the tool rotation aligns more closely with the designed geometry as a result of the atom flow variation and residual stress distribution. A dimensional analysis showed that the cutting speed factor and groove dimension factor significantly influence the specific energy and material removal rate in nano-milling. The groove quality can be improved by increasing the groove dimension factor or by decreasing the cutting speed factor. Finally, a machinability chart was developed for quality nano-milling processes.  相似文献   
5.
We show that selected self-assembled monolayers (SAMs) and bilayers are readily characterized by the application of controlled photooxidation and spontaneous desorption mass spectrometry (SDMS) in the negative ion mode. Additionally, SDMS is used to characterize organic and inorganic anionic species adsorbed to the surface of a positively charged SAM surface, 2-aminoethanethiol (AET). Prominent peaks are observed that correspond both to the sulfonate form of each SAM and bilayer and to the anion form of each molecule adsorbed to AET. In addition, fragments of the oxidized thin films were also observed at m/z 80 (SO3-) and 97 (HSO4-). Other prominent fragment peaks more characteristic of the molecule are also seen in the mass spectra.  相似文献   
6.
Aspergillus niger CFTRI 1105 was cultivated on solid medium for glucoamylase production. Glucoamylase activity obtained was 83.7 U g−1 DFR (Dry Fermentation Residue) in a medium containing rice bran (100 g), corn flour (2 g), stock mineral solution (10 mL) and tap water (90 mL). When corn flour (2 g) in the medium was substituted with soya flour (2 g) no significant increase in glucoamylase was observed. The effects of soya flour, urea and peptone at the same elemental nitrogen concentration as with corn flour as carbon source on glucoamylase production were investigated. Supplementation with soya flour gave the highest glucoamylase activity (121 U g−1 DFR) at 72 h and addition of paddy husk to a medium containing corn and soya flour altered the enzyme production from 121 U g−1 DFR to 71.3 U g−1 DFR. Addition of gingili oil and coconut oil to the medium caused no improvement in glucoamylase production.  相似文献   
7.
Kausala Mylvaganam  K.Q. Xiao 《Carbon》2009,47(7):1693-1700
Carbon nanotube films were fabricated by a new deposition technique that can minimize carbon nanotube rolling/slipping when sliding against diamond. Molecular dynamics simulations were performed to understand the friction mechanisms. Results clarify the controversial arguments in the literature and conclude that the atomically smooth surface without dangling atoms and durability of the atomic lattice structure of carbon nanotubes makes them a good solid lubricant with an ultra-low coefficient of friction of around 0.01.  相似文献   
8.
Acoustic emission (AE) has been used in many applications in the field of particle science and technology. AE sensors have been used in particle concentration measurements both in gas-continuous and oil-continuous flows in the oil and gas industry. To avoid formation sand flowing into pipelines, leading to erosion of valves and in many cases even to complete blockage of the flow of oil and gas, AE sensors are almost exclusively used in sand monitoring and control. These are very often among standard sensors stipulated by the operators of oil and gas production facilities in offshore, on shore, and subsea applications. Special types of sensor design have led to easy mounting of these AE sensors, which are very often clamp-on devices. This article presents a brief overview of AE-based particle monitoring in general and focuses on flange-mounted sensors in the monitoring of particle flow. By using two or more AE sensors located suitably in the process line, the particle velocity can also be evaluated, as is shown in examples using correlation in this article. The AE sensors can easily be adapted to detect malfunctioning of the process line, whether pneumatic lines or silos, just by analyzing the time series of signals from strategically based AE sensors along the process lines. Some examples are given based on recent measurement data. Finally, the article presents an overview of possibilities for improved particle flow monitoring using a multisensor suite incorporating AE sensors with other sensors/detectors such as those derived from capacitance, resistance, gamma ray, microwave, and optical devices. Artificial intelligence (AI) techniques, such as fuzzy logic and neural network algorithms, used in handling the data from these sensors lead to faster and more reliable control. Some of these topics are addressed also.  相似文献   
9.
10.
The need for a compact device to monitor density of gases gave rise to an R&D project to look into the possibilities of using ultrasonic probes to measure density of gases. Through measurements of ultrasonic transducer impedance around the resonant frequency, it is shown experimentally and through simple theoretical considerations that the density of gases can be monitored using equivalent impedance of ultrasonic transducers placed in the medium to be monitored. The simple theory behind the principle and experimental results are presented in this paper. The promising results indicate that the technique can be combined with ultrasonic volumetric flowmeters to give mass flow without resorting to a separate density meter, as is the practice nowadays. The preliminary results obtained using nitrogen are presented here.<>  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号