首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   2篇
冶金工业   1篇
  2022年   1篇
  2021年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 46 毫秒
1
1.
Fc gamma receptor IIb (FcgRIIb) is the only inhibitory-FcgR in the FcgR family, and FcgRIIb-deficient (FcgRIIb−/−) mice develop a lupus-like condition with hyper-responsiveness against several stimulations. The activation of aryl hydrocarbon receptor (Ahr), a cellular environmental sensor, might aggravate activity of the lupus-like condition. As such, 1,4-chrysenequinone (1,4-CQ), an Ahr-activator, alone did not induce supernatant cytokines from macrophages, while the 24 h pre-treatment by lipopolysaccharide (LPS), a representative inflammatory activator, prior to 1,4-CQ activation (LPS/1,4-CQ) predominantly induced macrophage pro-inflammatory responses. Additionally, the responses from FcgRIIb−/− macrophages were more prominent than wild-type (WT) cells as determined by (i) supernatant cytokines (TNF-α, IL-6, and IL-10), (ii) expression of the inflammation associated genes (NF-κB, aryl hydrocarbon receptor, iNOS, IL-1β and activating-FcgRIV) and cell-surface CD-86 (a biomarker of M1 macrophage polarization), and (iii) cell apoptosis (Annexin V), with the lower inhibitory-FcgRIIb expression. Moreover, 8-week-administration of 1,4-CQ in 8 week old FcgRIIb−/− mice, a genetic-prone lupus-like model, enhanced lupus characteristics as indicated by anti-dsDNA, serum creatinine, proteinuria, endotoxemia, gut-leakage (FITC-dextran), and glomerular immunoglobulin deposition. In conclusion, an Ahr activation worsened the disease severity in FcgRIIb−/− mice possibly through the enhanced inflammatory responses. The deficiency of inhibitory-FcgRIIb in these mice, at least in part, prominently enhanced the pro-inflammatory responses. Our data suggest that patients with lupus might be more vulnerable to environmental pollutants.  相似文献   
2.
A chronic kidney disease (CKD) causes uremic toxin accumulation and gut dysbiosis, which further induces gut leakage and worsening CKD. Lipopolysaccharide (LPS) of Gram-negative bacteria and (1➔3)-β-D-glucan (BG) of fungi are the two most abundant gut microbial molecules. Due to limited data on the impact of intestinal fungi in CKD mouse models, the influences of gut fungi and Lacticaseibacillus rhamnosus L34 (L34) on CKD were investigated using oral C. albicans-administered 5/6 nephrectomy (5/6Nx) mice. At 16 weeks post-5/6Nx, Candida-5/6Nx mice demonstrated an increase in proteinuria, serum BG, serum cytokines (tumor necrotic factor-α; TNF-α and interleukin-6), alanine transaminase (ALT), and level of fecal dysbiosis (Proteobacteria on fecal microbiome) when compared to non-Candida-5/6Nx. However, serum creatinine, renal fibrosis, or gut barrier defect (FITC-dextran assay and endotoxemia) remained comparable between Candida- versus non-Candida-5/6Nx. The probiotics L34 attenuated several parameters in Candida-5/6Nx mice, including fecal dysbiosis (Proteobacteria and Bacteroides), gut leakage (fluorescein isothiocyanate (FITC)-dextran), gut-derived uremic toxin (trimethylamine-N-oxide; TMAO) and indoxyl sulfate; IS), cytokines, and ALT. In vitro, IS combined with LPS with or without BG enhanced the injury on Caco-2 enterocytes (transepithelial electrical resistance and FITC-dextran permeability) and bone marrow-derived macrophages (supernatant cytokines (TNF-α and interleukin-1 β; IL-1β) and inflammatory genes (TNF-α, IL-1β, aryl hydrocarbon receptor, and nuclear factor-κB)), compared with non-IS activation. These injuries were attenuated by the probiotics condition media. In conclusion, Candida administration worsens kidney damage in 5/6Nx mice through systemic inflammation, partly from gut dysbiosis-induced uremic toxins, which were attenuated by the probiotics. The additive effects on cell injury from uremic toxin (IS) and microbial molecules (LPS and BG) on enterocytes and macrophages might be an important underlying mechanism.  相似文献   
3.
Ultraviolet (UV) disinfection of greywater has a number of advantages for small scale applications, but the UV disinfection efficiency can be impeded by high levels of particulates and chemicals in the greywater, micro-organism aggregation, and the geometry between the UV lamp and surrounding sleeve leading to suboptimal flow paths through the lamp assembly. Most process models for UV systems are empirical in nature and do not adequately represent the distribution of UV dose that is actually delivered to micro-organisms in a continuous flow system. This paper presents a model which incorporates: (1) variations in micro-organism sensitivity to UV radiation, (2) the variation of dose received in the UV reactor chamber, and (3) the shielding effect of part of the micro-organism population by the presence of particulates. The model is capable of predicting the asymptotic decay observed in bacterial survival curves when organisms are exposed to a UV dose in a greywater matrix and has been calibrated using experimental data on a series of synthetic greywaters of differing composition and validated against a series of real greywater samples. The model compares favorably to other UV disinfection models and allows the influence of water quality parameters such as turbidity, suspended solids, and UV absorbance to be examined. This allows water quality limits to be defined beyond which the UV disinfection of greywater becomes ineffective. Acceptable performance criteria are established for low power UV systems for the treatment of greywater, which have implications for the selection of suitable annular UV reactors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号