首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9756篇
  免费   378篇
  国内免费   107篇
电工技术   233篇
综合类   193篇
化学工业   1895篇
金属工艺   356篇
机械仪表   360篇
建筑科学   347篇
矿业工程   103篇
能源动力   329篇
轻工业   607篇
水利工程   107篇
石油天然气   156篇
武器工业   16篇
无线电   1126篇
一般工业技术   2226篇
冶金工业   1126篇
原子能技术   108篇
自动化技术   953篇
  2023年   92篇
  2022年   176篇
  2021年   228篇
  2020年   189篇
  2019年   154篇
  2018年   253篇
  2017年   204篇
  2016年   220篇
  2015年   210篇
  2014年   271篇
  2013年   574篇
  2012年   388篇
  2011年   452篇
  2010年   393篇
  2009年   371篇
  2008年   362篇
  2007年   332篇
  2006年   313篇
  2005年   261篇
  2004年   236篇
  2003年   220篇
  2002年   201篇
  2001年   173篇
  2000年   220篇
  1999年   234篇
  1998年   303篇
  1997年   264篇
  1996年   236篇
  1995年   197篇
  1994年   186篇
  1993年   176篇
  1992年   148篇
  1991年   153篇
  1990年   103篇
  1989年   111篇
  1988年   118篇
  1987年   112篇
  1986年   90篇
  1985年   129篇
  1984年   124篇
  1983年   137篇
  1982年   97篇
  1981年   97篇
  1980年   85篇
  1979年   91篇
  1978年   83篇
  1977年   66篇
  1976年   72篇
  1975年   57篇
  1974年   54篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
This study presents an improved mathematical model to analyse the stress wave propagation in adhesively bonded functionally graded (FG) circular cylinders (butt joint) under an axial impulsive load. The volume fractions of the material constituents in the upper and lower cylinders were functionally tailored through the thickness of each cylinder using a power-law. The effective material properties of both cylinders, which are made of aluminum (Al) and silicon carbide (SiC), at any point were predicted by using the Mori–Tanaka homogenization scheme. In this improved model, the governing equations of the wave propagation include the spatial derivatives of local mechanical properties and were discretized by means of the finite difference method. The influence of these spatial derivatives and the compositional gradient exponent on the displacement and stress distributions of the joint was investigated. The material composition variations of both cylinders affected the displacement and stress fields whereas the compositional gradient exponent had a minor effect. The stress concentrations were alleviated in time, the displacement and stress distributions/variations around/along the upper and lower cylinder-adhesive interfaces were significantly affected by the adhesive layer. The spatial derivatives also affected the temporal histories of the displacement and stress components evaluated at the selected critical points of the upper cylinder, adhesive layer and lower cylinder. The consideration of the spatial local material derivatives provided a more accurate mathematical model of wave propagations through the graded layered structures.  相似文献   
2.
3.
Ganapati  Reddi  Samoju  Visweswara Rao  Jammu  Bhaskara Rao 《SILICON》2021,13(9):2869-2880
Silicon - This paper presents, analytical modeling of surface potential,threshold voltage and DIBL for a Dual-Metal Double-Gate Gate-All-Around (DM-DG-GAA) MOSFET considering the parabolic...  相似文献   
4.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   
5.
6.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
7.
8.
9.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
10.
In fractured reservoirs, an effective matrix-fracture mass transfer is required for oil recovery. Surfactants have long been considered for oil recovery enhancement, mainly in terms of their ability to reduce oil–water interfacial tension. These surfactants are effective when the fractured formations are water-wet, where capillary imbibition of surfactants from the fracture into the matrix contributes to oil recovery. However, another beneficial aspect of surfactants, namely their ability to alter wettability, remains to be explored and exploited. Surfactants capable of altering wettability can be especially beneficial in oil-wet fractured formations, where the surfactant in the fracture diffuses into the matrix and alters the wettability, enabling imbibition of even more surfactant into the matrix. This sequential process of initial diffusion followed by imbibition continues well into the matrix yielding significant enhancements in oil recovery.In order to test this hypothesis of sequential diffusion–imbibition phenomenon, Dual-Drop Dual-Crystal (DDDC) contact angle experiments have been conducted using fractured Yates dolomite reservoir fluids, two types of surfactants (nonionic and anionic) and dolomite rock substrates. A new experimental procedure was developed in which crude oil equilibrated with reservoir brine has been exposed to surfactant to simulate the matrix-fracture interactions in fractured reservoirs. This procedure enables the measurements of dynamic contact angles and oil–water interfacial tensions, in addition to providing the visual observations of the dynamic behavior of crude oil trapped in the rock matrix as it encounters the diffusing surfactant from the fractures. Both the measurements and visual observations indicate wettability alterations of the matrix surface from oil-wet to less oil-wet or intermediate wet by the surfactants. Thus this study is of practical importance to oil-wet fractured formations where surfactant-induced wettability alterations can result in significant oil recovery enhancements. In addition, this study has also identified the need to include contact angle term in the dimensionless Bond number formulations for better quantitative interpretation of rock–fluids interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号