首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   2篇
  2012年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 625 毫秒
1
1.
This study used in situ polymerization to prepare polyethylene terephthalate (PET) nanocomposites incorporating Ethoquad‐modified montmorillonite (eMMT), unmodified hectorite (HCT), or phenyl hectorite (phHCT) particles to study the impact of platelet surface chemistry and loading on thermal, mechanical, and gas barrier properties. eMMT platelets reduced the PET crystallization rate without altering the ultimate degree of crystallinity. In contrast, HCT and phHCT platelets accelerated the polymer's crystallization rate and increased its crystallinity. DMA results for thermally‐quenched samples showed that as T increased past glass transition temperature (Tg), HCT and phHCT nanocomposites (and control PET) manifested precipitous drops in G′ followed by increasing G′ due to cold crystallization; in contrast, eMMT nanocomposites had much higher G′ values around Tg. This provides direct evidence of eMMT reinforcement in thermally‐quenched eMMT nanocomposites. These results suggest that eMMT has a strong, favorable interaction with PET, possibly through Ethoquad‐PET entanglement. HCT and phHCT have a fundamentally different interaction with PET that increases crystallization rate and Tg by 11 to 17°C. Water barrier improvement in eMMT nanocomposites agrees with previously published oxygen barrier results and can be rationalized in terms of a tortuous path gas barrier model. POLYM. ENG. SCI., 52:1888–1902, 2012. © 2012 Society of Plastics Engineers  相似文献   
2.
The invention of Nylon‐6/clay nanocomposites by the Toyota Research Group of Japan heralded a new chapter in the field of polymer composites. This article highlights the work done in the field of rubber/clay nanocomposites. The preparations of rubber/clay nanocomposites by solution blending, latex compounding, and melt intercalation are covered and a thorough discussion of the mechanical properties of the various rubber/clay nanocomposite systems is presented. Other properties such as barrier, dynamic mechanical behavior, and thermal properties are also discussed. Finally, the future trends in the rubber/clay nanocomposites are mentioned. POLYM. ENG. SCI., 47:1956–1974, 2007. © 2007 Society of Plastics Engineers  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号