首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   1篇
建筑科学   2篇
能源动力   1篇
轻工业   5篇
  2014年   1篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Anaerobic ammonium oxidation (anammox) bacteria have been detected in variety of marine environment in recent years, however, there have been only a few studies on their characteristics in the culture. The aim of this study is to reveal the effect of temperature on nitrogen removal ability and bacterial community in a culture of marine anammox bacteria (MAAOB). The MAAOB were cultured from the sediment of a sea-based waste disposal site at the North Port of Osaka Bay in Japan. The maximum nitrogen removal rate (NRR) was observed at 25°C in the MAAOB culture, and it decreased both at below 20°C and over 33°C. The activation energy of the MAAOB culture was calculated to be 54.6 kJ mol(-1) in the 5°C to 30°C range. No significant change in bacterial community according with temperature (5-37°C) was confirmed in the results of polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE). Meanwhile, a number of bacteria related to the oxidation-reduction reaction of sulfur were confirmed and it is speculated that they involved in the activity of MAAOB and nitrogen removal ability in the culture.  相似文献   
2.
Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium   总被引:2,自引:0,他引:2  
This paper provides the first kinetic parameters for a hydrogen-oxidizing perchlorate-reducing bacterium (PCRB), Dechloromonas sp. PC1. The qmax for perchlorate and chlorate were 3.1 and 6.3 mg/mgDW-day, respectively. The K for perchlorate was 0.14 mg/L, an order of magnitude lower than reported for other PCRB. The yields Y on perchlorate and chlorate were 0.23 and 0.22 mgDW/mg, respectively, and the decay constant b was 0.055/day. The growth-threshold, Smin, for perchlorate was 14 microg/L, suggesting that perchlorate cannot be reduced below this level when perchlorate is the primary electron-acceptor, although it may be possible when oxygen or nitrate is the primary acceptor. Chlorate accumulated at maximum concentrations of 0.6-4.3 mg/L in batch tests with initial perchlorate concentrations ranging from 100 to 600 mg/L. Furthermore, 50 mg/L chlorate inhibited perchlorate reduction with perchlorate at 100 mg/L. This is the first report of chlorate accumulation and inhibition for a pure culture of PCRB. These Chlorate effects are consistent with competitive inhibition between perchlorate and chlorate for the (per)chlorate reductase enzyme.  相似文献   
3.
Biohydrogen is expected as one of the alternative energy to fossil fuel. In this study, halotolerant photosynthetic hydrogen producing bacteria (ht-PHB) were isolated from a sediment of tideland, and hydrogen gas (H2) production by isolated ht-PHB from mixed short-chain fatty acids (SFAs) using a long-wavelength light emitting diode (LW-LED) was investigated. The isolated ht-PHB grow on a culture containing three kinds of SFAs (lactic acid, acetic acid, butyric acid) and produced H2 with their complete consumption at NaCl concentration in the 0–3% range in the light of tungsten lamp. The isolated ht-PHB was phylogenetically identified as Rhodobacter sp. KUPB1. The KUPB1 showed well growth and H2 production even under LW-LED light irradiation, indicating that LW-LED is quite useful as an energy-saving light source for photosynthetic H2 production.  相似文献   
4.
5.
The hydrogen-based membrane biofilm reactor (MBfR) has been shown to reduce perchlorate to below 4 microg/L, but little is known about the microbial ecology of this or other hydrogen-based reactors, especially when influent perchlorate concentrations are much lower than the influent oxygen and nitrate concentrations. Dissimilatory (per)chlorate-reducing bacteria (PCRB) can use oxygen as an electron acceptor, and most can also use nitrate. Since oxygen and nitrate can be reduced concurrently with perchlorate, they may serve as primary electron acceptors, sustaining PCRB when the perchlorate concentrations are very low. We studied five identical MBfRs, all seeded with the same inoculum and initially supplied with oxygen, or oxygen plus nitrate, in the influent. After 20 days, perchlorate was added to four MBfRs at influent concentrations of 100-10,000 microg/L, while the fifth was maintained as a control. One day after perchlorate addition, the MBfRs displayed limited perchlorate reduction, suggesting a low initial abundance of PCRB. However, perchlorate reduction improved significantly over time, and denaturing gradient gel electrophoresis (DGGE) analyses suggested an increasing abundance of a single Dechloromonas species. Fluorescence in-situ hybridization (FISH) tests showed that the Dechloromonas species accounted for 14% of the bacterial count in the control MBfR, and 22%, 31%, and 49% in the MBfRs receiving nitrate plus 100, 1000, and 10,000 microg/L perchlorate, respectively. The abundance was 34% in the MBfR receiving oxygen plus 1000 microg/L perchlorate. These results suggest that oxygen is more favorable than nitrate as a primary electron acceptor for PCRB, that PCRB are present at low levels even without perchlorate, and that the presence of perchlorate, even at low levels relative to nitrate or oxygen, significantly enhances selection for PCRB.  相似文献   
6.
Mixtures of La2O3 and Al2O3 with various La contents were prepared by co-precipitation from La(NO3)3 and Al(NO3)3 solutions and calcined at 800° to 1400°C. The addition of small amounts of La2O3 (2 to 10 mol%) to Al2O3 gives rise to the formation of lanthanum β-alumina (La 2 O3·11–14Al2O3) upon heating to above 1000°C and retards the transformation of γ-Al2O3 to α-Al2O3 and associated sintering.  相似文献   
7.
8.
An aryl-phosphate ester (APE)-degrading bacterium was isolated from the leachate of a sea-based waste disposal site. The isolated APE-degrading bacterial strain YS-57 grew well in a medium containing glucose and NaCl, and degraded two types of APE:tricresyl phosphate and triphenyl phosphate. The optimal temperature, pH, and NaCl concentration for the growth of strain YS-57 were 30 degrees C, 7.0, and 1.0%, respectively. Strain YS-57 grew at an APE concentration of 25 mg/l without being inhibited. APEs were degraded by the supernatant of the medium in which strain YS-57 was cultured, suggesting that the APE-degrading enzyme was released into the extracellular space in the logarithmic growth phase. The 16S rDNA sequence of strain YS-57 showed 95.6% similarity to that of Roseobacter gallaeciensis and the morphological properties were also comparable. Consequently, strain YS-57 was closely related to the genus Roseobacter.  相似文献   
9.
The effect of conditioning for a variety of inoculums on fermentative hydrogen production was investigated. In addition, the effects of pH condition on hydrogen fermentation and bacterial community were investigated. The effect of conditioning on hydrogen production was different depending on the inoculum types. An appreciable hydrogen production was shown with anaerobic digested sludge and lake sediment without conditioning, however, no hydrogen was produced when refuse compost and kiwi grove soil were used as inoculums without conditioning. The highest hydrogen production was obtained with heat-conditioned anaerobic digested sludge, almost the same production was also obtained with unconditioned digested sludge. The pH condition considerably affected hydrogen fermentation, hydrogen gas was efficiently produced with unconditioned anaerobic sludge when the pH was controlled at 6.0 throughout the culture period and not when only the initial pH was adjusted to 6.0 and 7.0. Hydrogen production decreased when the culture pH was only adjusted at the beginning of each batch in continuous batch culture, and additionally, bacterial community varied with the change in hydrogen production. It was suggested that Clostridium and Coprothermobacter species played important role in hydrogen fermentation, and Lactobacillus species had an adverse effect on hydrogen production.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号