首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   11篇
综合类   2篇
化学工业   39篇
金属工艺   3篇
机械仪表   2篇
建筑科学   4篇
能源动力   4篇
轻工业   19篇
水利工程   4篇
石油天然气   1篇
武器工业   1篇
无线电   12篇
一般工业技术   14篇
冶金工业   7篇
自动化技术   27篇
  2022年   4篇
  2021年   14篇
  2020年   12篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   10篇
  2012年   10篇
  2011年   9篇
  2010年   8篇
  2009年   1篇
  2007年   9篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
排序方式: 共有139条查询结果,搜索用时 31 毫秒
1.
2.
We studied the adsorption of SOx (x?=?2,3) molecules on the surface of pristine graphene (PG) and N-doped graphene (NDG) by density functional theory (DFT) calculations at the B3LYP/6-31G(d) level. We used Mulliken and NBO charge analysis to calculate the net charge transfer of adsorbed SOx on pristine and defected graphene systems. Our calculations reveal much higher adsorption energy and higher net charge transfer by using NDG instead of pristine graphene. Furthermore, the density of state (DOS) graphs point to major orbital hybridization between the SOx and NDG, while there is no evidence of hybridization by using pristine graphene. Based on our results, it is found that SO2 and SO3 molecules can be adsorbed on the surface of NDG physically and chemically with adsorption energies (Eads) of ?27.5 and 65.2?kJ?mol?1 (19.6 and 51.4?kJ?mol?1 BSSE), respectively, while low adsorption energies were calculated in the case of using pristine graphene. So we introduced NDG as a sensitive adsorbent/sensor for detection of SO2 and SO3.  相似文献   
3.
4.
Salmonella serovars are increasing in importance as significant pathogens of both human and animals. Although water and wastewater are treated to eliminate pathogenic microorganisms, they still play an important role in the transmission of Salmonella spp. In this study, bacteriophages infecting Salmonella spp. were isolated from wastewater and evaluated; for their potential to lyse environmental Salmonella strains in vitro at different MOIs and temperatures; and to control the wastewater bacterial community. Three distinct phages designated sww65, sww275, and sww297; as defined by plaque morphology, electron microscopy and host range; were obtained from wastewater. Challenge tests were performed at 37, and 30 °C with the infection of the Salmonella cultures with individual phage, a mixture of two phages, and cocktail of three phages at MOIs of 100, 102, and 104 PFU/CFU. At 30, and 37 °C, a cocktail of three phages reduced all of the Salmonella cultures tested. These results required a high multiplicity of infection. However, when infected with only one phage or a mixture of two phages at MOIs of 100 or 10 2 PFU/CFU, an emergence of bacterial resistance was observed. The dynamic monitoring of wastewater enterobacterial community was conducted using Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR). The number of bands decreased gradually with the use of individual phage or phage cocktails. Moreover, the dynamic monitoring of Salmonella community during wastewater treatment was performed using PCR detection of virulence gene invA. The results correlated with the ERIC-PCR fingerprints, and suggested that Salmonella community was affected by the phage treatment. Indeed, in wastewater, bacteriophages are reducing Salmonella and other members of the Enterobacteriaceae. These results indicated that dynamic changes are closely related with the process of treatment. The introduction of wide host range bacteriophages in wastewater can have a potential impact on the dynamics of the microbial communities, manifested by the reduction or the elimination of microbial species.  相似文献   
5.

A silane moisture-cured polyolefin elastomer/linear low-density polyethylene (LLDPE) blend was prepared through a two-step silane-grafting method (Sioplas Process) in an industrial scale twin-screw extruder. The silane-grafted compound was used to make wire and cable coatings. In this work, the effect of some interactive parameters on quality of the products prepared by the above method has been studied, while so far, there have been less experimental investigations. The volume resistivity of cross-linked compound was changed from 2.96 × 1014 to 7.41 × 1014 Ω cm with increasing LLDPE component by maximum 10 wt%. Surface morphology of the product was corrected with reduction in benzoyl peroxide (BPO) concentration from 0.2 wt% to 0.13 wt%. BPO at this level acted as an initiator in grafting reaction of vinyl trimethoxysilane. The curing condition and specimen preparation method by injection molding and/or extrusion were factors which influenced the hot-set test results at 200 °C. The results of tensile and elongation studies showed a maximum value of 9 MPa and 397% for the tests, after 6 h curing. With increases in curing time at a specified temperature, the gel content of the cross-linked compound was increased and reached its maximum value. The maximum gel content values were found to be approximately 60%, 80%, and 82% at temperatures of 25, 60, and 85 °C, respectively. The hardness, density, and tear strength of the samples did not vary significantly with the curing temperature.

  相似文献   
6.
To modify the degradability and improve the hydrophilicity of polylactic acid (PLA), collagen‐modified polylactide (CPLA) was synthesized by means of grafting modification method including chloridization and aminolysis, and its structure was characterized by FTIR, 1H NMR, and fluorescein isothiocyanate‐labeled fluorescence spectra. Subsequently, the hydrophilicity and degradation behavior of CPLA were characterized. Finally, CPLA was used as a carrier for the preparation of the trypsin sustained release microspheres via the emulsion‐solvent evaporation technique, followed with its characterization. Results showed that the collagen had been grafted into PLA and the graft ratio of collagen measured about 6.7%. Water absorption behavior test indicated that the hydrophilicity of CPLA was significantly higher than PLA. Furthermore, degradability test revealed that the degradation behavior of PLA was obviously modified and there was no obvious acid‐catalyzed self‐accelerating degradation behavior in the degradation process of CPLA. It was also indicated that the encapsulation efficiency and drug content in trypsin‐loaded CPLA microspheres were all clearly higher than trypsin‐loaded PLA microspheres. The results suggested that CPLA showed a great potential as matrix for drug delivery. POLYM. COMPOS., 36:88–93, 2015. © 2014 Society of Plastics Engineers  相似文献   
7.
河南省洛阳市新安县民俗文化村规划设计,在"有机更新"理论的指导下,尊重民俗文化,提出"整体性""自发性""延续性""阶段性""经济性""综合效益"等原则,以实现其可持续发展,并力图使民俗文化村成为真正的"工作居住平衡体".  相似文献   
8.
Generally ionic liquids have gained increasing attention in organic synthesis as catalyst and solvent. However, there are some drawbacks, including the difficulties in the product purification, ionic liquid recycling, and use of excess amounts of the expensive ionic liquid when the ionic liquid is used in the organic reactions. In addition, the high viscosity of ionic liquids can lead to mass transfer limitations in fast chemical reactions. These problems can be overcome by the use of supported ionic liquid phases. In this article, a simple, efficient and green method has been developed for the synthesis of bisphenolic antioxidants by the reaction of 2-tert-butyl-4-methylphenol and aldehydes in the presence of nanosilica supported dual acidic ionic liquid (NSSDAIL) as robust and reusable catalyst under solvent-free conditions. Three different NSSDAILs were synthesized and characterized using SEM, BET, IR, and XRD techniques. High yields of the products, short reaction times, use of a non corrosive, non toxic and reusable catalyst, and use of solvent-free condition are the worthwhile advantages of the current method.  相似文献   
9.
Metallurgical and Materials Transactions B - Phosphorus removal from silicon using a combination of solvent and slag refining, with lower carbon footprint and lower energy requirement than the...  相似文献   
10.
One of the CHRISGAS project objectives is to study the shift catalysts in biomass-generated synthesis gas. The water gas shift reaction is ruled by equilibrium, and the state of the gas can for a given H2/CO ratio be shifted by addition/removal of water, CO2 and/or by a change in the temperature. Stability area in respect to gas composition, sulphur content, pressure and temperature for FeCr shift catalyst has been investigated by thermodynamic equilibrium calculations. The calculations show that carbide formation is favourable in the “Normal water” case without sulphur in the gas. If sulphur is present in the gas, the situation improves due to sulphide formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号