首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   3篇
金属工艺   1篇
无线电   3篇
冶金工业   1篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Gut microbiota encompasses a wide variety of commensal microorganisms consisting of trillions of bacteria, fungi, and viruses. This microbial population coexists in symbiosis with the host, and related metabolites have profound effects on human health. In this respect, gut microbiota plays a pivotal role in the regulation of metabolic, endocrine, and immune functions. Bacterial metabolites include the short chain fatty acids (SCFAs) acetate (C2), propionate (C3), and butyrate (C4), which are the most abundant SCFAs in the human body and the most abundant anions in the colon. SCFAs are made from fermentation of dietary fiber and resistant starch in the gut. They modulate several metabolic pathways and are involved in obesity, insulin resistance, and type 2 diabetes. Thus, diet might influence gut microbiota composition and activity, SCFAs production, and metabolic effects. In this narrative review, we discuss the relevant research focusing on the relationship between gut microbiota, SCFAs, and glucose metabolism.  相似文献   
2.
3.
The paper presents two original and innovative contributions: 1) the model of machine learning (ML) based approach for predictive maintenance in manufacturing system based on machine status indications only, and 2) semi-Double-loop machine learning based intelligent Cyber-Physical System (I-CPS) architecture as a higher-level environment for ML based predictive maintenance execution. Considering only the machine status information provides rapid and very low investment-based implementation of an advanced predictive maintenance paradigm, especially important for SMEs. The model is validated in real-life situations, exploring different learning algorithms and strategies for learning maintenance predictive models. The findings show very high level of prediction accuracy.  相似文献   
4.
The site of metabolism in vascular smooth muscle responsible for the release of nitric oxide (NO) from nitroprusside is not well established. In this study we observed that a membrane-bound NADH oxidoreductase in the pulmonary artery activates nitroprusside to release NO, and we examined whether this process could potentially participate in relaxation to nitroprusside. Relaxation to nitroprusside in bovine calf pulmonary artery is inhibited by a scavenger of NO and by an antagonist of NO stimulation of guanylate cyclase. A flavoprotein probe that inhibits pulmonary artery NADH oxidoreductase (1 micromol/L diphenyliodonium) and electron acceptors for NADH oxidoreductase (0.3 mmol/L nitroblue tetrazolium and 0.1 mmol/L ferricyanide) inhibited pulmonary artery relaxation to nitroprusside, but not to nitroglycerin. Pulmonary arteries were observed to promote the release of NO from nitroprusside in vitro, and NO release was inhibited by the presence of nitroblue tetrazolium, ferricyanide, and diphenyliodonium. In homogenates of pulmonary arteries, NADH (0.1 mmol/L) increased the release of NO from nitroprusside by approximately 6-fold, whereas NADPH, mitochondrial substrates, and other redox cofactors had minimal effects on NO release, and the action of NADH on nitroprusside was inhibited by nitroblue tetrazolium, ferricyanide, and diphenyliodonium. A membrane fraction enriched in NADH oxidoreductase activity showed a NADH-dependent release of NO from nitroprusside; nitroprusside caused NADH consumption, and it also inhibited the NADH-dependent reduction of nitroblue tetrazolium. Thus, a membrane-bound NADH oxidoreductase appears to contribute to the release of NO from nitroprusside, but not nitroglycerin, in calf pulmonary artery.  相似文献   
5.
Stimuli‐responsive materials have the potential to enable the generation of new bioinspired devices with unique physicochemical properties and cell‐instructive ability. Enhancing biocompatibility while simplifying the production methodologies, as well as enabling the creation of complex constructs, i.e., via 3D (bio)printing technologies, remains key challenge in the field. Here, a novel method is presented to biofabricate cellularized anisotropic hybrid hydrogel through a mild and biocompatible process driven by multiple external stimuli: magnetic field, temperature, and light. A low‐intensity magnetic field is used to align mosaic iron oxide nanoparticles (IOPs) into filaments with tunable size within a gelatin methacryloyl matrix. Cells seeded on top or embedded within the hydrogel align to the same axes of the IOPs filaments. Furthermore, in 3D, C2C12 skeletal myoblasts differentiate toward myotubes even in the absence of differentiation media. 3D printing of the nanocomposite hydrogel is achieved and creation of complex heterogeneous structures that respond to magnetic field is demonstrated. By combining the advanced, stimuli‐responsive hydrogel with the architectural control provided by bioprinting technologies, 3D constructs can also be created that, although inspired by nature, express functionalities beyond those of native tissue, which have important application in soft robotics, bioactuators, and bionic devices.  相似文献   
6.
The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. “Dynamic” liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.  相似文献   
7.
The realization, the characteristics and the bit-error-rate (BER) performance of a single frequency, linear polarization Er3+-doped distributed Bragg reflector fiber laser are reported. The device, pumped at 980 nm, gives a maximum output power of 13 mW with an overall slope efficiency η=24%, a continuous-wave intensity ripple around 1% and a linewidth of 2.2 kHz. The BER test, performed without any polarization control system in a complete 475-km-long 2.5-Gb/s wavelength-division-multiplexed transmission line, shows only a 0.5-dB penalty is introduced  相似文献   
8.
Nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the most common liver disorders worldwide and the major causes of non-viral liver cirrhosis in the general population. In NAFLD, metabolic abnormalities, obesity, and metabolic syndrome are the driving factors for liver damage with no or minimal alcohol consumption. ALD refers to liver damage caused by excess alcohol intake in individuals drinking more than 5 to 10 daily units for years. Although NAFLD and ALD are nosologically considered two distinct entities, they show a continuum and exert synergistic effects on the progression toward liver cirrhosis. The current view is that low alcohol use might also increase the risk of advanced clinical liver disease in NAFLD, whereas metabolic factors increase the risk of cirrhosis among alcohol risk drinkers. Therefore, special interest is now addressed to individuals with metabolic abnormalities who consume small amounts of alcohol or who binge drink, for the role of light-to-moderate alcohol use in fibrosis progression and clinical severity of the liver disease. Evidence shows that in the presence of NAFLD, there is no liver-safe limit of alcohol intake. We discuss the epidemiological and clinical features of NAFLD/ALD, aspects of alcohol metabolism, and mechanisms of damage concerning steatosis, fibrosis, cumulative effects, and deleterious consequences which include hepatocellular carcinoma.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号