首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20738篇
  免费   1860篇
  国内免费   933篇
电工技术   1187篇
技术理论   3篇
综合类   1412篇
化学工业   3664篇
金属工艺   1084篇
机械仪表   1186篇
建筑科学   1619篇
矿业工程   563篇
能源动力   567篇
轻工业   1380篇
水利工程   379篇
石油天然气   1410篇
武器工业   126篇
无线电   2398篇
一般工业技术   2775篇
冶金工业   914篇
原子能技术   209篇
自动化技术   2655篇
  2024年   93篇
  2023年   372篇
  2022年   654篇
  2021年   881篇
  2020年   587篇
  2019年   553篇
  2018年   625篇
  2017年   654篇
  2016年   591篇
  2015年   794篇
  2014年   998篇
  2013年   1124篇
  2012年   1296篇
  2011年   1448篇
  2010年   1290篇
  2009年   1201篇
  2008年   1161篇
  2007年   1083篇
  2006年   1134篇
  2005年   953篇
  2004年   628篇
  2003年   612篇
  2002年   547篇
  2001年   459篇
  2000年   493篇
  1999年   525篇
  1998年   477篇
  1997年   440篇
  1996年   382篇
  1995年   355篇
  1994年   246篇
  1993年   196篇
  1992年   167篇
  1991年   89篇
  1990年   106篇
  1989年   108篇
  1988年   69篇
  1987年   31篇
  1986年   28篇
  1985年   21篇
  1984年   14篇
  1983年   9篇
  1982年   15篇
  1981年   7篇
  1980年   9篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1959年   1篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This work evaluated the synergistic effects of combined high-intensity ultrasound (HIU) with β-cyclodextrin (β-CD) treatments on inhibiting browning of apple juice and explored the mechanism through simulation system. The combined treatment of 300 W HIU with 0.006 g mL−1 β-CD had a synergistic impact on maintaining juice colour, resulting in a 39.06% reduction in browning degree, only a 36.64% decrease in total phenolic content, and a 17.82% reduction in PPO activity. The inhibition of enzymatic browning in simulated system revealed that HIU suppressed the enzyme (Polyphenol oxidase, PPO) and β-CD inhibited enzyme (PPO) and embedded substrate (polyphenol). The results of spectroscopic analysis showed that the particle-size distribution of PPO narrowed, the content of α-helix in the secondary structure increased, the fluorescence intensity increased, and the maximum wavelength was red-shifted after HIU and β-CD treatment. Changes in structure could further result in PPO activity loss. Hence, the combined treatment could synthetically alleviate the browning of apple juice.  相似文献   
2.
To investigate the evolution of the structural and enhanced magnetic properties of GdMnO3 systems induced by the substitution of Mn with Cr, polycrystalline GdMn1-xCrxO3 samples were synthesized via solid-state reactions. XRD characterization shows that all GdMn1-xCrxO3 compounds with single-phase structures crystallize well and that Cr3+ ions entering the lattice sites of GdMnO3 induce structural distortion. SEM results indicate that the grain size of the synthesized samples (a few microns) decreases as the Cr substitution concentration increases. Positron annihilation lifetime spectroscopy reveals that vacancy-type defects occur in GdMn1-xCrxO3 ceramics and that the vacancy size and concentration clearly change with the Cr content. The temperature and field dependence of the magnetization curves show that Cr substitution significantly influences the magnetic ordering of the gadolinium sublattice, improving the weak ferromagnetic transition temperature and magnetization of GdMn1-xCrxO3. The enhanced magnetization of GdMn1-xCrxO3 is closely related to the vacancy defect concentration.  相似文献   
3.
Synthetic active matters are perfect model systems for non-equilibrium thermodynamics and of great potential for novel biomedical and environmental applications. However, most applications are limited by the complicated and low-yield preparation, while a scalable synthesis for highly functional microswimmers is highly desired. In this paper, an all-solution synthesis method is developed where the gold-loaded titania-silica nanotree can be produced as a multi-functional self-propulsion microswimmer. By applying light, heat, and electric field, the Janus nanotree demonstrated multi-mode self-propulsion, including photochemical self-electrophoresis by UV and visible light radiation, thermophoresis by near-infrared light radiation, and induced-charge electrophoresis under AC electric field. Due to the scalable synthesis, the Janus nanotree is further demonstrated as a high-efficiency, low-cost, active adsorbent for water decontamination, where the toxic mercury ions can be reclaimed with enhanced efficiency.  相似文献   
4.
To evaluate the separate impacts on human health and establish effective control strategies, it is crucial to estimate the contribution of outdoor infiltration and indoor emission to indoor PM2.5 in buildings. This study used an algorithm to automatically estimate the long-term time-resolved indoor PM2.5 of outdoor and indoor origin in real apartments with natural ventilation. The inputs for the algorithm were only the time-resolved indoor/outdoor PM2.5 concentrations and occupants’ window actions, which were easily obtained from the low-cost sensors. This study first applied the algorithm in an apartment in Tianjin, China. The indoor/outdoor contribution to the gross indoor exposure and time-resolved infiltration factor were automatically estimated using the algorithm. The influence of outdoor PM2.5 data source and algorithm parameters on the estimated results was analyzed. The algorithm was then applied in four other apartments located in Chongqing, Shenyang, Xi'an, and Urumqi to further demonstrate its feasibility. The results provided indirect evidence, such as the plausible explanations for seasonal and spatial variation, to partially support the success of the algorithm used in real apartments. Through the analysis, this study also identified several further development directions to facilitate the practical applications of the algorithm, such as robust long-term outdoor PM2.5 monitoring using low-cost light-scattering sensors.  相似文献   
5.
The confinement of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) in a stabilized inorganic glass matrix is a new strategy for improving their long-term stability and promoting their applications in the optoelectronic field. Here, in situ nanocrystallization strategy is developed to precipitate CsPbBr3?xIx NCs with arbitrary I/Br ratio among an elaborately designed GeS2–Sb2S3-based chalcogenide glass matrix. Spherical CsPbBr3?xIx NCs are homogeneously distributed in the glass matrix after thermal treatment. The photoluminescence (PL) spectra show that the emission peaks of CsPbBr3?xIx NCs can be tuned from 570 nm to 722 nm with the replacement of Br by I. The fs transient absorption (TA) spectra reveal that there exists some structural defects in the NCs, leading to short PL decay life. This work would shed light on confining CsPbX3 NCs into glassy matrices, facilitating their future applications in photoelectronic fields.  相似文献   
6.
Laminated Si3N4/SiCw ceramics were successfully prepared by tape casting and hot-pressing. Its mechanical properties were measured and the impact resistance was discussed. The toughness of the laminated Si3N4/SiCw ceramics was 13.5 MPa m1/2, which was almost 1.6 times that of Si3N4/SiCw composite ceramics, namely 8.5 MPa m1/2. Moreover, the indentation strength of laminated Si3N4/SiCw ceramics was not sensitive to increasing indentation loads and exhibited a rising R-curve behaviour, indicating that the laminated Si3N4/SiCw ceramics had excellent impact resistance. The improved toughness and impact resistance of laminated Si3N4/SiCw ceramics was attributed to the residual stress caused by a thermal expansion coefficient mismatch between the different layers, resulting in crack deflection and bridging of SiC whiskers in the interface layer, thus consuming a large amount of fracture work.  相似文献   
7.
The design of highly stable and efficient porous materials is essential for developing breakthrough hydrocarbon separation methods based on physisorption to replace currently used energy-intensive distillation/absorption technologies. Efforts to develop advanced porous materials such as zeolites, coordination frameworks, and organic polymers have met with limited success. Here, a new class of ionic ultramicroporous polymers (IUPs) with high-density inorganic anions and narrowly distributed ultramicroporosity is reported, which are synthesized by a facile free-radical polymerization using branched and amphiphilic ionic compounds as reactive monomers. A covalent and ionic dual-crosslinking strategy is proposed to manipulate the pore structure of amorphous polymers at the ultramicroporous scale. The IUPs exhibit exceptional selectivity (286.1–474.4) for separating acetylene from ethylene along with high thermal and water stability, collaboratively demonstrated by gas adsorption isotherms and experimental breakthrough curves. Modeling studies unveil the specific binding sites for acetylene capture as well as the interconnected ultramicroporosity for size sieving. The porosity-engineering protocol used in this work can also be extended to the design of other ultramicroporous materials for the challenging separation of other key gas constituents.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号