首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学工业   1篇
一般工业技术   1篇
冶金工业   9篇
  2019年   1篇
  2003年   1篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1976年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Intestinal epithelial cells respond to Salmonella typhimurium by internalizing this pathogen and secreting, in a polarized manner, an array of chemokines which direct polymorphonuclear leukocyte (PMN) movement. Notably, interleukin-8 (IL-8) is secreted basolaterally and directs PMN through the lamina propria, whereas pathogen-elicited epithelial chemoattractant (PEEC) is secreted apically and directs PMN migration across the epithelial monolayer to the intestinal lumen. While most studies of S. typhimurium pathogenicity have focused on the mechanism by which this bacterium invades its host, the enteritis characteristically associated with salmonellosis appears to be more directly attributable to the PMN movement that occurs in response to this pathogen. Therefore, we sought to better understand the relationship between S. typhimurium invasion and epithelial promotion of PMN movement. First, we investigated whether S. typhimurium becoming intracellular was necessary or sufficient to induce epithelial promotion of PMN movement. Blocking S. typhimurium invasion by preventing, with cytochalasin D, the epithelial cytoskeletal rearrangements which mediate internalization did not reduce the epithelial promotion of PMN movement. Conversely, bacterial attainment of an intracellular position was not sufficient to induce model epithelia to direct PMN transmigration, since neither basolateral invasion by S. typhimurium nor apical internalization of an invasion-deficient mutant (achieved by inducing membrane ruffling with epidermal growth factor) induced this epithelial cell response. These results indicate that specific interactions between the apical surface of epithelial cells and S. typhimurium, rather than simply bacterial invasion, mediate the epithelial direction of PMN transmigration. To further investigate the means by which S. typhimurium induces epithelia to direct PMN movement, we investigated whether the same signaling pathways regulate secretion of IL-8 and PEEC. IL-8 secretion, but not PEEC secretion, was activated by phorbol myristate acetate and blocked by an inhibitor (mg-132) of the proteosome which mediates NF-kappabeta activation. Further, secretion of IL-8, but not PEEC, was activated by an entry-deficient (HilDelta) S. typhimurium mutant or by basolateral invasion of a wild-type strain. Together, these results indicate that distinct signaling pathways mediate S. typhimurium invasion, induction of IL-8 secretion, and induction of PEEC secretion in model intestinal epithelia.  相似文献   
2.
Intestinal epithelial cells express hPepT1, an apical transporter responsible for the uptake of a broad array of small peptides. As these could conceivably include n-formyl peptides, we examined whether hPepT1 could transport the model n-formylated peptide fMLP and, if so, whether such cellular uptake of fMLP influenced neutrophil-epithelial interactions. fMLP uptake into oocytes was enhanced by hPepT1 expression. In addition, fMLP competitively inhibited uptake of a known hPepT1 substrate (glycylsarcosine) in hPepT1 expressing oocytes. hPepT1 peptide uptake was further examined in a polarized human intestinal epithelial cell line (Caco2-BBE) known to express this transporter. Epithelial monolayers internalized apical fMLP in a fashion that was competitively inhibited by other hPepT1 recognized solutes, but not by related solutes that were not transported by hPepT1. Fluorescence analyses of intracellular pH revealed that fMLP uptake was accompanied by cytosolic acidification, consistent with the known function of hPepT1 as a peptide H+ cotransporter. Lumenal fMLP resulted in directed movement of neutrophils across epithelial monolayers. Solutes that inhibit hPepT1-mediated fMLP transport decreased neutrophil transmigration by approximately 50%. Conversely, conditions that enhanced the rate of hPepT1-mediated fMLP uptake (cytosolic acidification) enhanced neutrophil-transepithelial migration by approximately 70%. We conclude that hPepT1 transports fMLP and uptake of these peptide influences neutrophil-epithelial interactions. These data (a) emphasize the importance of hPepT1 in mediating intestinal inflammation, (b) raise the possibility that modulating hPepT1 activity could influence states of intestinal inflammation, and (c) provide the first evidence of a link between active transepithelial transport and neutrophil-epithelial interactions.  相似文献   
3.
4.
Increasingly mechanical engineering departments are beginning to incorporate remotely operated laboratories into their laboratory curriculums. Yet very few studies exist detailing the extent to which this new medium for laboratory delivery fulfills the educational goals of traditional in‐person laboratories. This paper describes a comparison of educational outcomes between in‐person and remotely operated laboratories in the mechanical engineering curriculum. The study carried out in the 2001 Fall semester was performed using a remotely operated and an in‐person jet thrust laboratory. The laboratories illustrate the fundamentals of compressible fluid mechanics as part of an undergraduate mechanical engineering curriculum. The results from this study indicated no significant difference in the educational outcomes between students who performed the in‐person or the remote experiment.  相似文献   
5.
In polarized cells, signal transduction by cholera toxin (CT) requires apical endocytosis and retrograde transport into Golgi cisternae and perhaps ER (Lencer, W.I., C. Constable, S. Moe, M. Jobling, H.M. Webb, S. Ruston, J.L. Madara, T. Hirst, and R. Holmes. 1995. J. Cell Biol. 131:951-962). In this study, we tested whether CT's apical membrane receptor ganglioside GM1 acts specifically in toxin action. To do so, we used CT and the related Escherichia coli heat-labile type II enterotoxin LTIIb. CT and LTIIb distinguish between gangliosides GM1 and GD1a at the cell surface by virtue of their dissimilar receptor-binding B subunits. The enzymatically active A subunits, however, are homologous. While both toxins bound specifically to human intestinal T84 cells (Kd approximately 5 nM), only CT elicited a cAMP-dependent Cl- secretory response. LTIIb, however, was more potent than CT in eliciting a cAMP-dependent response from mouse Y1 adrenal cells (toxic dose 10 vs. 300 pg/well). In T84 cells, CT fractionated with caveolae-like detergent-insoluble membranes, but LTIIb did not. To investigate further the relationship between the specificity of ganglioside binding and partitioning into detergent-insoluble membranes and signal transduction, CT and LTIIb chimeric toxins were prepared. Analysis of these chimeric toxins confirmed that toxin-induced signal transduction depended critically on the specificity of ganglioside structure. The mechanism(s) by which ganglioside GM1 functions in signal transduction likely depends on coupling CT with caveolae or caveolae-related membrane domains.  相似文献   
6.
Modeling Salmonella-epithelial cell interaction in vitro has led to the realization that epithelial cells are crucial in orchestrating neutrophil (PMN) responses, in part by stimulating basolateral release of epithelial chemokines, including IL-8. However, such basolaterally released chemokines, while likely important in orchestration of PMN movement across the subepithelial matrix, are unlikely to be responsible for the final step of transepithelial migration of PMN and entry into the apical compartment. We now show that S. typhimurium attachment to T84 cell apical epithelial membranes induces polarized apical secretion of a pathogen-elicited epithelial chemoattractant (PEEC) bioactivity. Experiments employing semipurified PEEC indicate that it is released in a polarized apical fashion and is sufficient to explain the observed final step of transepithelial migration of PMN induced by Salmonella-apical membrane interaction. By preliminary physical characterization and profiles of PMN activation, PEEC appears to be a novel PMN chemotactic bioactivity. This 1- to 3-kDa nominal molecular mass chemokine-like bioactivity directly stimulates PMN via a pertussis toxin-sensitive receptor and elicits a Ca2+ signal. While these latter features are shared by most other chemokines, analysis of PEEC-elicited PMN activation reveals that, unlike these other agonists, PEEC, even at saturating concentrations, elicits chemotactic activity in the absence of stimulation of superoxide production and/or release of primary and/or secondary granules. These data suggest that the apically released PEEC activity appears to represent a novel epithelial-derived chemoattractant that directs PMN movement across epithelial monolayers.  相似文献   
7.
Disruptions in the mucosal lining of the gastrointestinal tract reseal by epithelial cell migration, a process termed restitution. We examined the involvement of laminin isoforms and their integrin receptors in restitution using the intestinal epithelial cell line T84. T84 cells express primarily laminins 5, 6, and 7 as indicated by immunostaining using laminin subunit-specific monoclonal antibodies (MAbs). A MAb (BM2) specific for the laminin alpha 3 subunit, a component of laminins 5, 6, and 7, completely inhibited the closure of mechanical wounds in T84 monolayers. Confocal microscopy using MAbs BM2 (laminin alpha 3 subunit) and 6F12 (laminin beta 3 subunit) revealed that laminin-5 is deposited in a basal matrix that extends into the wound. The MAbs 4E10 (laminin beta 1 subunit) and C4 (laminin beta 2 subunit) stained the lateral membranes between T84 cells. This staining was enhanced in cells adjoining wounds. Because T84 cells stained faintly with MAbs 4C7 (laminin alpha 1 subunit) and with MAbs 4F11 and 1B4 (laminin alpha 2 subunit), we suggest that expression of laminins 6 and 7 is enhanced in response to wounding. The alpha 3 beta 1 integrin and the alpha 6-containing integrins function in wound closure because MAbs specific for the beta 1 integrin subunit (MAb13), the alpha 3 subunit (IVA5), and the alpha 6 subunit (2B7) potently inhibited T84 migration into wounds. Immunofluorescence using UMA9, a beta 4-integrin-specific MAb, revealed that alpha 6 beta 4 integrin exists in a Triton-X-100-insoluble structure at the basal surface and that the staining of this structure is enhanced in cells adjoining wounds. In addition, a Triton-X-100-soluble pool of alpha 6 beta 4, as well as alpha 3 beta 1 and presumably alpha 6 beta 1, was found along lateral surfaces of T84 cells. On flattened cells adjoining wounds, staining for these integrins was distributed diffusely, suggesting a redistribution that accompanies cell migration. Taken together, these data suggest that wound-induced epithelial cell migration is a finely tuned process that is dependent upon the regulated function and localization of specific laminins and their integrin receptors.  相似文献   
8.
Oat and spelt husks (OH and SH, respectively) lignocellulosic biomass derived fillers have been compared with commercial wood flour (WF) in respects to their morphology, chemical composition, bulk density, aspect ratio, and thermal stability. OH and SH have been obtained by both mechanical milling and steam explosion auto‐hydrolysis treatment at various processing conditions. Reinforcement efficiency of OH and SH derived lignocellulosic biomass fillers on the flexural properties of maleic acid‐grafted polypropylene (PPgMA) compatibilized polypropylene (PP) composites is compared with that of WF. The compatibilized PP composites have been manufactured by melt compounding. Flexural test specimens of the compatibilized PP composites have been manufactured by injection molding. It has been demonstrated that both the husks derived lignocellulose fillers can be used to improve flexural modulus and maximal flexural strength of PP, although its modifying effect is somewhat smaller in comparison to WF reinforcement, most probably due to higher cellulose content of the latter. Husks derived lignocellulose filler‐reinforced PP composites, however, demonstrate increased flexibility in comparison to WF‐filled systems. POLYM. ENG. SCI., 59:2467–2473, 2019. © 2019 Society of Plastics Engineers  相似文献   
9.
10.
Eosinophils may be prominent in intestinal diseases including allergic gastroenteritis, inflammatory bowel disease, enteritis associated with hypereosinophilic syndromes (HES), and parasitic diseases. Unlike normal blood eosinophils, those that circulate in HES and those that infiltrate inflamed tissue exhibit an "activated" phenotype. To model intestinal epithelial-eosinophil interactions, we used peripheral blood eosinophils and human crypt-like T84 epithelial cell-line monolayers. Eosinophils from normal, mildly atopic donors, only if activated by PMA or primed with granulocyte-macrophage-CSF for 48 h, as well as eosinophils from HES patients elicited a short circuit current when applied apically to T84 monolayers. This eosinophil-derived bioactivity, which was transferable in cell-free supernatants and in < 1000 m.w. ultrafiltrates, stimulated electrogenic Cl- secretion, as indicated by inhibition with basolateral bumetanide or gluconate substitution and by enhancement of the rate constant for 125I efflux from preloaded T84 cells. This secretagogue activity was blocked in both intact activated eosinophils and in eosinophil-conditioned supernatants, by 8-phenyl-theophylline, indicating involvement of an adenosine receptor. Ion exchange and reversed-phase HPLC analyses demonstrated that eosinophil supernatant ultrafiltrates contained elevated levels of 5'-AMP that was converted to adenosine after incubation with epithelium. Inhibition of epithelial apical membrane ecto-5'-nucleotidase ablated the conversion to adenosine. These studies establish that activated eosinophils elicit Cl- secretion from intestinal epithelial and that 5'-AMP released by eosinophils followed by its conversion to adenosine at the epithelial surface is the basis for this response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号