首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学工业   1篇
无线电   1篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Wireless Personal Communications - A rectangular meandering-microstrip patch antenna (RM-MPA) with short pin for implant antenna and biomedical applications at industrial, scientific, and medical...  相似文献   
2.

In the development of photocatalytic processes towards waste water treatment, we have been long faced three foremost obstacles, including catalyst mass production, photon-energy cost and finally catalyst separation process after the treatment. In this study, such problems were addressed through the development of samarium and cerium-doped BiFeO3 (BFO) nanoparticles (NPs) (BixRExFeO3; RE?=?Sm, Ce, x?=?0.00, 0.01, 0.03, 0.05;) employing a rapid solution combustion synthesis (SCS). This technique is greatly capable of large scale nanopowder production at low temperature. In the SCS procedure, different amount of oxidant-to-fuel (glycine-to-nitrate ion, Gly/NO3?) were investigated (Gly/NO3??=?0.2, 0.3, 0.37, 0.56, and 0.8). Moreover, a catalytic sunlight irradiation was employed to study the effect of Sm and Ce dopant contents on the photodegradation of benzene and methyl orange (MO) in the aqueous solution. The as-synthesized catalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV–Visible diffuse reflectance spectroscopy (UV–Vis DRS) and Brunauer–Emmett–Teller (BET)/Barrett-Joyner Halenda (BJH) techniques. The band gap energy of BFO decreaed from 2.14 to 2.06 eV with the increase of Sm3+ contents while it increased up to 2.22 eV in the case of Ce-doped BFO. The solar decomposition of the organic pollutants demonstrated the superior performance of Bi1-xSmxFeO3 photocatalyst rather than using cerium in the BFO crystalline structure which is attributed to the increased surface area and visible light harvesting.

Graphic Abstract
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号