首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204篇
  免费   4篇
  国内免费   1篇
电工技术   5篇
化学工业   71篇
金属工艺   1篇
机械仪表   1篇
建筑科学   6篇
能源动力   4篇
轻工业   15篇
水利工程   8篇
无线电   34篇
一般工业技术   39篇
冶金工业   6篇
自动化技术   19篇
  2023年   3篇
  2022年   12篇
  2021年   14篇
  2020年   10篇
  2019年   10篇
  2018年   10篇
  2017年   3篇
  2016年   6篇
  2015年   6篇
  2014年   9篇
  2013年   19篇
  2012年   8篇
  2011年   12篇
  2010年   5篇
  2009年   6篇
  2008年   9篇
  2007年   12篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   9篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   6篇
  1995年   1篇
  1993年   4篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
1.
The seasonal patterns of phytoplankton primary production, chlorophyll‐a concentration, cell number and several other limnological variables in Lake Phewa, located in the active monsoon zone in Central Himalaya, Nepal, were studied for a year beginning in April 2001. During the study period, the gross primary production and chlorophyll‐a concentrations were relatively low during the monsoon season. The phytoplankton cell number, represented by 24 genera, also fluctuated seasonally, but tended to increase in the pre‐ and post‐monsoon period. These results suggest that the monsoon plays a crucial role in the primary production and phytoplankton dynamics for Lake Phewa. Among the phytoplankton species, Microcystis aeruginosa, a representative species for eutrophic lakes, was the dominant phytoplankton. At the same time, however, it is clear that the lake is not yet heavily eutrophic. The present study suggests that the exchange of lake water during the monsoon season contributes to maintaining the health of the lake against further degradation. Nevertheless, the silt carried in the monsoon rain run‐off from the lake's catchment area suggests increasingly serious degradation problems for this small mountainous lake.  相似文献   
2.
Lake Rupa is a small, subtropical, shallow lake with a surface area of 100 ha situated 600 m a.s.l. in Central Himalaya, Nepal. This degraded lake was studied between 2000 and 2006, with the goal of determining whether or not it could be restored by a community‐based cooperative of local people living in its catchment. Main threats to the lake, its aquatic life and its very existence include encroachment by excessive aquatic vegetation, sedimentation, and low in‐lake concentrations of dissolved oxygen (DO). Small lakes (≤ 500 ha) are relatively prone to the process of ‘succession and climax’, although they also can be of social, environmental and ecological importance. Thus, their disappearance could spark social chaos and disorder in areas already having to cope with other rapid environmental changes. This means that credible mechanisms for revitalizing or protecting small lakes are an important goal. Accordingly, a lake cooperative of 329 households living in close vicinity to Lake Rupa was formed in 2002, by prioritizing traditional fishers, women and other deprived community members with the goals of respecting the citizenry and equity. Following the cooperative's campaigns directed at weed removal and fish stocking, encroachment of vegetation on the lake margins was halted, its aquatic weeds became under control, and its fisheries improved. In addition to the cooperative's restoration activities, several water quality parameters, including water transparency and DO and chlorophyll‐a concentrations, were monitored on a monthly basis. The measured water transparency was inconsistent, exhibiting large variations between 2000 and 2003. Relatively low, but consistent, values, however, were measured after 2004. The results imply that the removal of weeds, and sufficient nutrients and solar radiation are subsequently available to the lake's phytoplankton communities. Supporting this notion is that the chlorophyll‐a concentration spiked to 205 µg L−1 in November 2006, the water transparency became consistent, and the DO concentration increased to >3.8 mg L−1 during the critical months (March–May) after 2004. These water quality indicators indicated improvement in the degraded Lake Rupa, suggesting that the establishment of cooperatives such as that highlighted in this study could be a powerful and sustainable mechanism for restoring degraded lakes in similar socioeconomic settings by maintaining equity, by connecting communities with their resources, and by facilitating integrity, equity, citizenry and social justice.  相似文献   
3.
We have calculated thermal conductivity of alumina nanofluids (with water and ethylene glycol as base fluids) using temperature as well as concentration-dependent viscosity, η. The temperature profile of η is obtained using Gaussian fit to the available experimental data. In the model, the interfacial resistance effects are incorporated through a phenomenological parameter α. The micro-convection of the alumina nanoparticle (diameter less than 100 nm) is included through Reynolds and Prandtl numbers. The model is further improved by explicitly incorporating the thermal conductivity of the nanolayer surrounding the nanoparticles. Using this improved model, thermal conductivity of copper nanofluid is calculated. These calculations capture the particle concentration-dependent thermal conductivity and predict the dependence of the thermal conductivity on the size of the nanoparticle. These studies are significant to understand the underlying processes of heat transport in nanofluids and are crucial to design superior coolants of next generation.  相似文献   
4.
Interaction of electromagnetic radiation with a physical mixture of metal nitrates and amides/hydrazides is observed to initiate high-temperature reactions, useful for realizing several high-temperature ceramic materials. A judicious choice of such redox mixtures undergoes exothermic reactions when they couple with microwave radiation. The coupling of electromagnetic radiation with metal salts and amides/hydrazides depends on the dielectric properties of the individual components in the reaction mixture. The approach has been used to prepare γ-Fe2O3, Fe3O4, MgCr2O4, α-CaCr2O4, and La0.7Ba0.3MnO3.  相似文献   
5.
Good-quality diamond-like carbon films (6 at.% H2, 2400 kgf/mm2 microhardness, 2.7 eV bandgap, higly insulating) have been obtained by the DC glow discharge decomposition of acetylene. Mass spectroscopic thermal effusion measurements were carried out on the films deposited under different deposition conditions. Analyses of hydrogen in conjunction with hydrocarbon effusing species yield information on the microstructure and nature of C---H bonding configurations. It is shown to be a useful analytical tool to study hydrogenated amorphous carbon films of different microstructures varying from polymer-like to diamond-like.  相似文献   
6.
The biogenic synthesis of silver nanoparticles was achieved by using gum kondagogu (Cochlospermum gossypium), a natural biopolymer (Gk‐AgNPs). Synthesised nanoparticles were characterised by using UV–visible spectroscopy, inductively coupled plasma‐atomic emission spectrometer, X‐ray diffraction, transmission electron microscope techniques. The silver nano particle size determined was found to be 3.6 ± 2.2 nm. The synthesised Gk‐AgNPs showed antifungal activity and exhibited minimum inhibitory concentration and minimal fungicidal concentration values ranging from 3.5 to 6.5 µg mL−1 against Aspergillus parasiticus (NRRL‐2999) and Aspergillus flavus (NRRL‐6513). Scanning electron microscopy–energy dispersive spectroscopy analysis revealed morphological changes including deformation, shrunken and ruptured mycelium of the fungi. At the biochemical level, the mode of action revealed that there was an elevated level of reactive oxygen species, lipid peroxidation, superoxide dismutase, and catalase enzyme activity. Increased oxidative stress led to increased outer membrane damage, which was confirmed by the entry of N ‐phenyl naphthylamine to the phospholipid layer of outer membrane and higher levels of K+ release from the fungi treated with Gk‐AgNPs. This study explores the possible application of biogenic silver nanoparticles produced from gum kondagogu as potent antifungal agents. The potent antifungal activity of Gk‐AgNPs gives scope for its relevance in biomedical application and as a seed dressing material.Inspec keywords: antibacterial activity, nanocomposites, silver, nanofabrication, nanoparticles, biomedical materials, polymers, visible spectra, ultraviolet spectra, atomic emission spectroscopy, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, microorganisms, X‐ray chemical analysis, enzymes, lipid bilayers, biomembranes, biomechanics, nanomedicineOther keywords: antifungal activity, gum kondagogu‐silver nanobiocomposite, Cochlospermum gossypium, natural biopolymer, UV‐visible spectroscopy, inductively coupled plasma‐atomic emission spectrometer, X‐ray diffraction, transmission electron microscope, fungicidal concentration, Aspergillus parasiticus, Aspergillus flavus, scanning electron microscopy, SEM‐energy dispersive spectroscopy, fungi deformation, ruptured mycelium, reactive oxygen species, lipid peroxidation, superoxide dismutase, catalase enzyme activity, oxidative stress, membrane damage, N‐phenyl naphthylamine, phospholipid layer, potassium ion release, biogenic silver nanoparticle, antifungal agent, seed dressing material, Ag  相似文献   
7.
Electrolytic conductivities of potassium halides, KX (X = Cl, Br, I) have been investigated in 10, 20, and 30 mass% glycerol + H2O mixtures at 298.0, 308.0, and 318.0 K. The conductance data have been analyzed by the Fuoss-conductance–concentration equation in terms of the limiting molar conductance (Λ0), the association constant (K A ), and the distance of closest approach of ion (R). The association constant (K A ) tends to increase in the order: 10 mass% < 20 mass% < 30 mass% glycerol + water mixtures, while it decreases with temperature. Thermodynamic parameters ΔH 0, ΔG 0, and ΔS 0 are obtained and discussed. Also, Walden products (Λ0η) are reported. The results have been interpreted in terms of ion–solvent interactions and structural changes in the mixed solvents.  相似文献   
8.
Water Resources Management - Diversified water supply schemes can reduce both peak demand and overall demand in the urban water supply network. Consequently, they provide benefits to both the water...  相似文献   
9.
In the present work iron oxide nanoparticles have been prepared by microwave assisted synthesis with the influence of different precursor salts and synthesis of magnetite, hematite, Iron oxide hydroxide and maghemite nanoparticles. Synthesized iron oxide nanoparticles were characterized with Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Energy-dispersive X-ray Spectroscopy (EDX). XRD measurements show that the peaks of diffractogram are in agreement with the theoretical data of magnetite, hematite, FeO(OH) (Iron oxide hydroxide) and maghemite. Crystallite size of the particles was found to be 33, 45, 36 and 43.5 nm for Fe3O4, α-Fe2O3, FeO(OH) and γ-Fe2O3. FESEM studies indicated that size of the particles is observed in the range of about 19.4 to 46.7 nm (Fig. 2a, average 32 nm), 29.1 to 67.6 nm (Fig. 2b average 45 nm), 29.1 to 40.8 (Fig. 2c average 36.6 nm), 29.1 to 80 nm (Fig. 2d average 43.5) for Fe3O4, α-Fe2O3, FeO(OH) and γ-Fe2O3 respectively. EDX spectral analysis reveals the presence of carbon, oxygen, iron in the synthesized nanoparticles. The FTIR graphs indicated absorption bands due to O–H stretching, C–O bending, C–H stretching and Fe–O stretching vibrations.  相似文献   
10.
Gobinath  V. K.  Rajasekar  R.  Santhosh  S.  Moganapriya  C.  Sri  A. Manju  Jaganathan  S. K. 《SILICON》2022,14(15):9773-9788
Silicon - Antireflection coatings (ARCs) have become one of the key techniques for mass production of Si solar cells. They are generally performed by vacuum processes such as thermal evaporation,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号