首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   9篇
  2009年   1篇
  2007年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The preparation of bimetallic rhodium-germanium/silica and rhodium-germanium/alumina catalysts was investigated by controlled surface reaction. Their catalytic performances were measured for two gas phase reactions (toluene hydrogenation at 323 K and cyclohexane dehydrogenation at 543 K) and for a liquid phase reaction (citral hydrogenation at 343 K).

Elemental analysis of bimetallic catalysts showed that germanium can be deposited by redox reaction between hydrogen activated on a parent monometallic rhodium catalyst and germanium tetrachloride dissolved in water (catalytic reduction method). EDX microanalysis of rhodium-germanium/silica catalysts indicated that rhodium and germanium were deposited in close contact on the silica support. However, on alumina-supported catalysts, germanium deposition occurred also separately on the support. For the different test reactions, the catalytic properties of rhodium were strongly altered by the addition of germanium. On alumina-supported catalysts, interesting catalytic effects were observed in citral hydrogenation when not only close contact exists between both metals but when, in addition, the second metal was deposited on the support in the close vicinity of rhodium.  相似文献   

2.
Corbos  E. C.  Elbouazzaoui  S.  Courtois  X.  Bion  N.  Marecot  P.  Duprez  D. 《Topics in Catalysis》2007,45(1-4):9-13
NOx storage capacity, sulphur resistance and regeneration of 1wt%Pt/Ce0.7Zr0.3O2 (Pt/CeZr) and 1wt%Pt/10wt%BaO/Ce0.7Zr0.3O2 (Pt/Ba/CeZr) catalysts were studied and compared to a 1wt%Pt/10wt%BaO/Al2O3 (Pt/Ba/Al) model catalyst submitted to the same treatments. Pt/Ba/CeZr presents the best NOx storage capacity at 400 °C in accordance with basicity measurements by CO2 TPD and Pt/CeZr shows the better performance at 200 °C mainly due to a low sensitivity to CO2 at this temperature. For all samples, sulphating induces a detrimental effect on NOx storage capacity but regeneration at 550 °C under rich conditions generally leads to the total recovery of catalytic performance. However, the nearly complete sulphur elimination is only observed on Pt/CeZr. Moreover, an oxidizing treatment at 800 °C leads to partial sulphates elimination on the Pt/CeZr catalyst whereas a stabilization of sulphates on Ba containing species is observed.  相似文献   
3.
The deactivation of a Pt/Ba/Al2O3 NO x -trap model catalyst submitted to SO2 treatment and/or thermal ageing at 800 °C was studied by H2 temperature programmed reduction (TPR), X-ray diffraction (XRD) and NO x storage capacity measurements.The X-ray diffractogram of the fresh sample exhibits peaks characteristic for barium carbonate. Thermal ageing leads to the decomposition of barium carbonate and to the formation of BaAl2O4. The TPR profile of the sulphated sample shows the presence of (i) surface aluminium sulphates, (ii) surface barium sulphates, (iii) bulk barium sulphates. The exposure to SO2 after ageing leads to a small decrease of the surface barium-based sulphates, expected mainly as aluminate barium sulphates. This evolution can be attributed to a sintering of the storage material. TPR experiments also show that thermal treatment at 800 °C after the exposure to SO2 involves the decomposition of aluminium surface sulphates to give mainly bulk barium sulphates, also pointed out by XRD. Thus, the thermal treatment at 800 °C leads to a stabilization of the sulphates.These results are in accordance with the NO x storage capacity measurements. On non-sulphated catalysts, the treatment at 800 °C induces to a decrease of the NO x storage capacity, showing that barium aluminate presents a lower NO x storage capacity than barium carbonate. Sulphation strongly decreases the NO x storage capacity of catalysts, whatever the initial thermal treatment, showing that barium sulphates inhibit the NO2 adsorption. Moreover, the platinum activity for the NO to NO2 oxidation is lowered by thermal treatments.  相似文献   
4.
Reduced Pt/Al2O3 catalysts with different chloride contents were treated at different temperatures under oxygen flow. TPR and TPD studies of oxidized species show that at low Cl/Pt atomic ratio (1) PtO2 is formed at low temperature (400–500 K) and is totally decomposed (900 K) yielding reduced metallic Pt and inducing metal sintering. At high Cl/Pt atomic ratio (6) formation of stable (up to 1000 K) platinum oxichloride avoids metal sintering.  相似文献   
5.
A series of 1 wt.%Pt/xBa/Support (Support = Al2O3, SiO2, Al2O3-5.5 wt.%SiO2 and Ce0.7Zr0.3O2, x = 5–30 wt.% BaO) catalysts was investigated regarding the influence of the support oxide on Ba properties for the rapid NOx trapping (100 s). Catalysts were treated at 700 °C under wet oxidizing atmosphere. The nature of the support oxide and the Ba loading influenced the Pt–Ba proximity, the Ba dispersion and then the surface basicity of the catalysts estimated by CO2-TPD. At high temperature (400 °C) in the absence of CO2 and H2O, the NOx storage capacity increased with the catalyst basicity: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr. Addition of CO2 decreased catalyst performances. The inhibiting effect of CO2 on the NOx uptake increased generally with both the catalyst basicity and the storage temperature. Water negatively affected the NOx storage capacity, this effect being higher on alumina containing catalysts than on ceria–zirconia samples. When both CO2 and H2O were present in the inlet gas, a cumulative effect was observed at low temperatures (200 °C and 300 °C) whereas mainly CO2 was responsible for the loss of NOx storage capacity at 400 °C. Finally, under realistic conditions (H2O and CO2) the Pt/20Ba/Al5.5Si catalyst showed the best performances for the rapid NOx uptake in the 200–400 °C temperature range. It resulted mainly from: (i) enhanced dispersions of platinum and barium on the alumina–silica support, (ii) a high Pt–Ba proximity and (iii) a low basicity of the catalyst which limits the CO2 competition for the storage sites.  相似文献   
6.
Topics in Catalysis - The deactivation of a Pt/Ba/Al2O3 NO x -trap model catalyst submitted to SO2 treatment and/or thermal ageing at 800&nbsp;°C was studied by H2 temperature programmed...  相似文献   
7.
A new bimetallic Pt-Sn compound [Pt(NH3)4][SnCl6] has been used as precursor for the preparation of supported Pt-Sn/Al2O3 catalysts. A comparison of a dried sample with that prepared by coimpregnation displays different behaviour in TPR, chemisorption. The initial catalytic activity properties were checked in the reactions of cyclohexane dehydrogenation and cyclopentane ring opening, whilen-hexane skeletal reactions were used to probe the quasisteady-state activity. The catalyst prepared via the Pt-Sn complex precursors exhibited some-what lower specific activity. This fact, together with enhanced olefin formation fromn-hexane was taken as an indication of lower amount of contiguous Pt atoms and some electronic interaction between Pt and Sn in that catalyst.On leave from Fachhochschule Ostfriesland, D-26723 Emden, Germany.  相似文献   
8.
This work deals with the effect of Mn or Fe addition on the NO x storage–reduction properties of a Pt/Ba/Al2O3 model catalyst. NO x storage capacity, SO2 poisoning and regeneration and NO x removal efficiency under rich/lean cycling conditions are studied. Fe addition to Pt/Ba/Al2O3 leads only to a small increase of NO x storage capacity, and more interestingly, to a better sulfur removal due to the inhibition of bulk barium sulfate formation. Unfortunately, the NO x storage property cannot be fully recovered. Moreover, Fe addition results in a decrease in the NO x removal efficiency. Mn addition also improves the NO x storage capacity, but no significant influence on the sulfur elimination is observed. Mn-doped catalyst does not improve the NO x removal efficiency, but NH3 selectivity is found to drastically decrease at 400 °C, from 20 to 3%. In addition, the NO x conversion can be improved at higher H2 concentration in the rich pulse, always keeping NH3 selectivity at low level.  相似文献   
9.
The deactivation by sulfur and regeneration of a model Pt/Ba/Al2O3 NOx trap catalyst is studied by hydrogen temperature programmed reduction (TPR), X-ray diffraction (XRD), and NOx storage capacity measurements. The TPR profile of the sulfated catalyst in lean conditions at 400 °C reveals three main peaks corresponding to aluminum sulfates (550 °C), “surface” barium sulfates (650 °C) and “bulk” barium sulfates (750 °C). Platinum plays a role in the reduction of the two former types of sulfates while the reduction of “bulk” barium sulfates is not influenced by the metallic phase. The thermal treatment of the sulfated catalyst in oxidizing conditions until 800 °C leads to a stabilization of sulfates which become less reducible. Stable barium sulfides are formed during the regeneration under hydrogen at 800 °C. However, the presence of carbon dioxide and water in the rich mixture allows eliminating more or less sulfides and sulfates, depending on the temperature and time. The regeneration in the former mixture at 650 °C leads to the total recovery of the NOx storage capacity even if “bulk” barium sulfates are still present on the catalyst.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号