首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   37篇
电工技术   4篇
综合类   11篇
化学工业   217篇
金属工艺   8篇
机械仪表   9篇
建筑科学   40篇
矿业工程   4篇
能源动力   17篇
轻工业   159篇
水利工程   6篇
石油天然气   6篇
无线电   25篇
一般工业技术   79篇
冶金工业   68篇
原子能技术   4篇
自动化技术   57篇
  2023年   9篇
  2022年   21篇
  2021年   32篇
  2020年   16篇
  2019年   13篇
  2018年   23篇
  2017年   13篇
  2016年   19篇
  2015年   30篇
  2014年   29篇
  2013年   49篇
  2012年   29篇
  2011年   36篇
  2010年   31篇
  2009年   31篇
  2008年   43篇
  2007年   26篇
  2006年   32篇
  2005年   24篇
  2004年   25篇
  2003年   19篇
  2002年   21篇
  2001年   10篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   6篇
  1995年   11篇
  1994年   12篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1968年   2篇
  1956年   1篇
  1954年   1篇
  1948年   13篇
  1919年   1篇
排序方式: 共有714条查询结果,搜索用时 15 毫秒
1.
2.
Peroxide crosslinking of unplasticized poly(vinyl chloride) with trimethylolpropane trimethacrylate was investigated. Formulations used in this work contained a nontoxic lead‐free stabilizer and showed good color and heat stability. The samples were examined by differential scanning calorimetry, and their tensile properties were measured at room temperature and at 130°C. Gel content or tetrahydrofuran‐insoluble material was measured as an indication of crosslinking. It was shown that premature crosslinking could be avoided during processing and that 190°C was the optimum processing temperature for maximum gel content. The residual unsaturation was monitored by using FTIR spectroscopy. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers  相似文献   
3.
Three-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabrication of spinal cord organoids on a chip. BC previously demonstrated the ability to support survival and differentiation of co-implanted or co-cultured cells and supported motor neuron survival in excitotoxically challenged spinal cord slice cultures. We tested different combinations of bioink and cross-linked material, analyzed the survival of BC on the surface and inside the scaffolds, and then tested if human iPSC-derived neural cells (motor neuron precursors and astrocytes) can be printed with the same protocol, which was developed for BC. We showed that this protocol is applicable for human cells. Neural differentiation was more prominent in the peripheral compared to central parts of the printed construct, presumably because of easier access to differentiation-promoting factors in the medium. These findings show that the gelatin-based and enzymatically cross-linked hydrogel is a suitable bioink for building a multicellular, bioprinted spinal cord organoid, but that further measures are still required to achieve uniform neural differentiation.  相似文献   
4.
Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNAs. Previously, we showed that the Hfq C-terminal region forms an amyloid-like structure and that these fibrils interact with membranes. The immediate consequence of this interaction is a disruption of the membrane, but the effect on Hfq structure was unknown. To investigate details of the mechanism of interaction, the present work uses different in vitro biophysical approaches. We show that the Hfq C-terminal region influences membrane integrity and, conversely, that the membrane specifically affects the amyloid assembly. The reported effect of this bacterial master regulator on membrane integrity is discussed in light of the possible consequence on small regulatory RNA-based regulation.  相似文献   
5.
HIV-2, compared to HIV-1, elicits potent and broadly neutralizing antibodies, and uses a broad range of co-receptors. However, both sensitivity to neutralization and breadth of co-receptor use varies between HIV-2 isolates, and the molecular background is still not fully understood. Thus, in the current study, we have deciphered relationships between HIV-2 neutralization sensitivity, co-receptor use and viral envelope glycoprotein (Env) molecular motifs. A panel of primary HIV-2 isolates, with predefined use of co-receptors, was assessed for neutralization sensitivity using a set of HIV-2 Env-directed monoclonal antibodies and co-receptor indicator cell lines. Neutralization sensitivity of the isolates was analysed in relation target cell co-receptor expression, in addition to amino acid motifs and predicted structures of Env regions. Results showed that HIV-2 isolates were more resistant to neutralizing antibodies when entering target cells via the alternative co-receptor GPR15, as compared to CCR5. A similar pattern was noted for isolates using the alternative co-receptor CXCR6. Sensitivity to neutralizing antibodies appeared also to be linked to specific Env motifs in V1/V2 and C3 regions. Our findings suggest that HIV-2 sensitivity to neutralization depends both on which co-receptor is used for cell entry and on specific Env motifs. This study highlights the multifactorial mechanisms behind HIV-2 neutralization sensitivity.  相似文献   
6.
7.
Ion implantation has the advantage of being a unidirectional doping technique. Unlike gaseous diffusion, this characteristic highlights strong possibilities to simplify solar cell process flows. The use of ion implantation doping for n‐type PERT bifacial solar cells is a promising process, but mainly if it goes with a unique co‐annealing step to activate both dopants and to grow a SiO2 passivation layer. To develop this process and our SONIA cells, we studied the impact of the annealing temperature and that of the passivation layers on the electrical quality of the implanted B‐emitter and P‐BSF. A high annealing temperature (above 1000 °C) was necessary to fully activate the boron atoms and to anneal the implantation damages. Low J0BSF (BSF contribution to the saturation current density) of 180 fA/cm2 was reached at this high temperature with the best SiO2 passivation layer. An average efficiency of 19.7% was reached using this simplified process flow (“co‐anneal process”) on large area (239 cm2) Cz solar cells. The efficiency was limited by a low FF, probably due to contaminations by metallization pastes. Improved performances were achieved in the case of a “separated anneals” process where the P‐BSF is activated at a lower temperature range. An average efficiency of 20.2% was obtained in this case, with a 20.3% certified cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
Non‐invasive imaging holds significant potential for implementation in tissue engineering. It can be used to monitor the localization and function of tissue‐engineered implants, as well as their resorption and remodelling. Thus far, however, the vast majority of effort in this area of research have focused on the use of ultrasmall super‐paramagnetic iron oxide (USPIO) nanoparticle‐labeled cells, colonizing the scaffolds, to indirectly image the implant material. Reasoning that directly labeling scaffold materials might be more beneficial (enabling imaging also in the case of non‐cellularized implants), more informative (enabling the non‐invasive visualization and quantification of scaffold degradation), and easier to translate into the clinic (cell‐free materials are less complex from a regulatory point‐of‐view), three different types of USPIO nanoparticles are prepared and incorporated both passively and actively (via chemical conjugation; during collagen crosslinking) into collagen‐based scaffold materials. The amount of USPIO incorporated into the scaffolds is optimized, and correlated with MR signal intensity, showing that the labeled scaffolds are highly biocompatible, and that scaffold degradation can be visualized using MRI. This provides an initial proof‐of‐principle for the in vivo visualization of the scaffolds. Consequently, USPIO‐labeled scaffold materials seem to be highly suitable for image‐guided tissue engineering applications.  相似文献   
9.
10.
Fabrics are pliable, breathable, lightweight, ambient stable, and have unmatched haptic perception. Here, a vapor deposition method is used to transform off‐the‐shelf plain‐woven fabrics, such as linen, silk, and bast fiber fabrics, into metal‐free conducting electrodes. These fabric electrodes are resistant to wear, stable after laundering and ironing, and can be body‐mounted with little detriment to their performance. A unique by‐product of conformally vapor coating plain‐woven fabrics is that textile parameters, such as thread material and fabric porosity, significantly affect the conductivity of the resulting fabric electrodes. The resistivities of the electrodes reported herein are linearly, not exponentially, dependent on length, meaning that they can be feasibly incorporated into garments and other large‐area body‐mounted devices. Further, these fabric electrodes possess the feel, weight, breathability, and pliability of standard fabrics, which are important to enable adoption of wearable devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号