首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
化学工业   11篇
能源动力   4篇
轻工业   1篇
无线电   2篇
一般工业技术   1篇
冶金工业   2篇
自动化技术   2篇
  2022年   5篇
  2021年   4篇
  2020年   1篇
  2014年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
2.
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.  相似文献   
3.
This Full Paper investigates the adsorption and desorption of the anticancer drugs cis‐diamminedichloroplatinum(II) (CDDP, cisplatin) and the new platinum(II) complex di(ethylenediamineplatinum)medronate (DPM), as well as the clinically relevant bisphosphonate alendronate, towards two biomimetic synthetic HA nanocrystalline materials with either plate‐shaped (HAps) or needle‐shaped (HAns) morphologies and different chemico‐physical properties. The adsorption and desorption kinetics are dependent on the specific properties of the drugs and the morphology of the HA nanoparticles. Adsorption of the platinum complexes occurs with retention of the nitrogen ligands but the chloride ligands of cisplatin are displaced. Despite their opposite charges, the negatively charged alendronate bisphosphonate and the positively charged aquated cisplatin are strongly adsorbed, while the neutral DPM complex shows lower affinity towards the negatively charged apatitic surface. The data suggest that adsorption of the two platinum complexes is driven by electrostatic attractions, while interaction between the alendronate and the HA surface takes place by ligand exchange in which the two phosphonate groups of the drug molecule replace two surface phosphate groups. Significantly, adsorption of positively charged hydrolysis species of cisplatin is more favored on the phosphate‐rich HAns surface while adsorption of negatively charged alendronate is more favored on the calcium‐rich HAps surface. The latter type of short‐range electrostatic interactions also appear to dominate the desorption kinetics; consequently, drug release is greater for neutral DPM than for charged alendronate and aquated cisplatin. Moreover, while the release per unit area of charged species is the same for the two types of HAs, the release of DPM is faster from HAns, which is lower in surface calcium, than for HAps. Overall, this work demonstrates that the properties of HA nanocrystals can be modulated in such a way to produce HA/biomolecule conjugates tailored for specific therapeutic applications.  相似文献   
4.
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.  相似文献   
5.
Plant-derived insoluble proteins (wheat gluten, and isolates from pea, lentil, and soybean) were used as fining agents in model white wine (made from Catalanesca grapes) after cold stabilization. Plant proteins were effective in giving a fast and remarkable decrease in turbidity. GC/MS and HPLC/MS approaches indicated that individual proteins had a different impact on the levels of compounds relevant to wine stability. Protein stability of wine was not affected by fining with plant proteins. Lentil proteins and gluten gave the best removal of monomeric and dimeric flavonol. Both caused a decrease in the total content of fermentative aroma compounds, such as ethyl esters, acetate esters, and alcohols. Lentil proteins had the highest impact on the aroma components, giving a marked decrease in aroma components. Gluten may thus be regarded as giving the best balance between fining efficacy and retention of aroma compounds. Also, gluten in the treated wines remained well below the suggested threshold for gluten-free foods. This study provides a methodological frame for thorough characterization of the impact of specific interventions on key wine components.  相似文献   
6.
Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients’ sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.  相似文献   
7.
Little is known about the molecular characteristics of pediatric brainstem gliomas (BSG), which continue to have a dismal prognosis. Targeted molecular strategies are limited due to rarity of biopsy BSG specimen coupled with obstacles associated with the analyses of formalin-fixed paraffin-embedded (FFPE) autopsies. The objective of this study was to develop methodologies to successfully identify the proteome profile from these archived FFPE specimens. Peptides were extracted from both tumor and adjacent normal FFPE brainstem specimen and quantified using (18) O proteolytic labeling strategy and LC-MS/MS analysis. The ingenuity pathway analysis software was used to elucidate interactions amongst differentially expressed proteins. We identified 188 proteins of which 54 (29%) were found up-regulated (≥1.5-fold) in BSG compared to normal sections. Of these, 15 (28%) proteins have previously been reported as potential biomarkers for supratentorial malignant gliomas, while the rest appear to be exclusive to pediatric BSG. Because the majority of differentially expressed proteins are unique to BSG, we conclude that pediatric BSG is distinct from supratentorial gliomas. To the best of our knowledge, this is the first proteome profile of pediatric BSG, which may facilitate discovery of novel therapeutic targets for early diagnostics and improving prognostics.  相似文献   
8.
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots.  相似文献   
9.
Generation of the 3′ overhang is a critical step during homologous recombination (HR) and replication fork rescue processes. This event is usually performed by a series of DNA nucleases and/or helicases. The nuclease NurA and the ATPase HerA, together with the highly conserved MRE11/RAD50 proteins, play an important role in generating 3′ single-stranded DNA during archaeal HR. Little is known, however, about HerA-NurA function and activation of this fundamental and complicated DNA repair process. Herein, we analyze the functional relationship among NurA, HerA and the single-strand binding protein SSB from Saccharolubus solfataricus. We demonstrate that SSB clearly inhibits NurA endonuclease activity and its exonuclease activities also when in combination with HerA. Moreover, we show that SSB binding to DNA is greatly stimulated by the presence of either NurA or NurA/HerA. In addition, if on the one hand NurA binding is not influenced, on the other hand, HerA binding is reduced when SSB is present in the reaction. In accordance with what has been observed, we have shown that HerA helicase activity is not stimulated by SSB. These data suggest that, in archaea, the DNA end resection process is governed by the strictly combined action of NurA, HerA and SSB.  相似文献   
10.
Valosin containing protein (VCP) has emerged as a central protein in the regulation of the protein quality control (PQC) system. VCP mutations are causative of multisystem proteinopathies, which include neurodegenerative diseases (NDs), and share various signs of altered proteostasis, mainly associated with autophagy malfunctioning. Autophagy is a complex multistep degradative system essential for the maintenance of cell viability, especially in post-mitotic cells as neurons and differentiated skeletal muscle cells. Interestingly, many studies concerning NDs have focused on autophagy impairment as a pathological mechanism or autophagy activity boosting to rescue the pathological phenotype. The role of VCP in autophagy has been widely debated, but recent findings have defined new mechanisms associated with VCP activity in the regulation of autophagy, showing that VCP is involved in different steps of this pathway. Here we will discuss the multiple activity of VCP in the autophagic pathway underlying its leading role either in physiological or pathological conditions. A better understanding of VCP complexes and mechanisms in regulating autophagy could define the altered mechanisms by which VCP directly or indirectly causes or modulates different human diseases and revealing possible new therapeutic approaches for NDs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号