首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4645篇
  免费   139篇
  国内免费   4篇
电工技术   268篇
综合类   14篇
化学工业   1051篇
金属工艺   114篇
机械仪表   91篇
建筑科学   88篇
矿业工程   2篇
能源动力   160篇
轻工业   360篇
水利工程   6篇
石油天然气   3篇
无线电   518篇
一般工业技术   666篇
冶金工业   926篇
原子能技术   112篇
自动化技术   409篇
  2023年   25篇
  2022年   42篇
  2021年   92篇
  2020年   37篇
  2019年   45篇
  2018年   59篇
  2017年   59篇
  2016年   74篇
  2015年   64篇
  2014年   108篇
  2013年   219篇
  2012年   166篇
  2011年   217篇
  2010年   180篇
  2009年   168篇
  2008年   212篇
  2007年   173篇
  2006年   147篇
  2005年   165篇
  2004年   121篇
  2003年   141篇
  2002年   134篇
  2001年   95篇
  2000年   101篇
  1999年   113篇
  1998年   392篇
  1997年   223篇
  1996年   157篇
  1995年   113篇
  1994年   116篇
  1993年   98篇
  1992年   51篇
  1991年   56篇
  1990年   39篇
  1989年   60篇
  1988年   37篇
  1987年   35篇
  1986年   37篇
  1985年   32篇
  1984年   40篇
  1983年   42篇
  1982年   30篇
  1981年   41篇
  1980年   31篇
  1979年   30篇
  1978年   30篇
  1977年   34篇
  1976年   50篇
  1974年   15篇
  1973年   10篇
排序方式: 共有4788条查询结果,搜索用时 15 毫秒
1.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
2.
3.
The use of field robots can greatly decrease the amount of time, effort, and associated risk compared to if human workers were to carryout certain tasks such as disaster response. However, transportability and reliability remain two main issues for most current robot systems. To address the issue of transportability, we have developed a lightweight modularizable platform named AeroArm. To address the issue of reliability, we utilize a multimodal sensing approach, combining the use of multiple sensors and sensor types, and the use of different detection algorithms, as well as active continuous closed‐loop feedback to accurately estimate the state of the robot with respect to the environment. We used Challenge 2 of the 2017 Mohammed Bin Zayed International Robotics Competition as an example outdoor manipulation task, demonstrating the capabilities of our robot system and approach in achieving reliable performance in the fields, and ranked fifth place internationally in the competition.  相似文献   
4.
5.
The World Robot Summit is a robot Olympics and aims to be held in a different country every four years from 2020. The concept of the Plant Disaster Prevention challenge is daily inspections, checks, and emergency response in industrial plants, and in this competition, robots must carry out these types of missions in a mock-up plant. The concept of the Tunnel Disaster Response and Recovery challenge is emergency response to tunnel disasters, and is a simulation competition whereby teams compete to show their ability to deal with disasters, by collecting information and removing debris. The Standard Disaster Robotics challenge assesses, in the form of a contest, the standard performance levels of a robot that are necessary for disaster prevention and emergency response. The World Robot Summit Preliminary Competition was held at Tokyo Big Sight in October 2018, and 36 teams participated in the Disaster Robotics Category. UGVs and UAVs contended the merits of new technology for solving complex problems, using core technologies such as mobility, sensing, recognition, performing operations, human interface, autonomous intelligence etc., as well as system integration and implementation of strategies for completing missions, gaining high-level results.  相似文献   
6.
This paper describes the dielectric breakdown characteristics of oil and oil‐impregnated paper for very fast transient (VFT) voltages. Blumlein circuits generate VFT voltages of 60 and 300 ns in a pulse width that simulates disconnecting switching surges in gas‐insulated switch gears. We measured the breakdown voltages of needle‐to‐plane, plane‐to‐plane oil gaps and several pieces of paper between plane electrodes for VFT and lightning impulse voltages. The measured data were formulated in V‐t characteristics and Weibull probability distributions. The inclination n of V‐t characteristics of insulating paper is 150, which is less than n = 13.7 of the plane‐to‐plane oil gap in the VFT time range. The shape parameters of Weibull distribution obtained in this study show that the scattering of breakdown voltages of paper is much less than that of oil. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 141(4): 16–24, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10043  相似文献   
7.
A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly( ethylene terephthalate ) (PET) and polyethylene (PE) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable calcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin-apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite coruposite coating.  相似文献   
8.
A new method is proposed to produce gold nanoparticles (GNP) by in situ reduction of a gold salt dissolved in water. The reducing agent used is Tiron instead of the citrate anion most often mentioned in literature. The influence of various parameters has been investigated, such as the content of Tiron with respect to that of the precursor of gold HAuCl4, or the initial pH of the solution after mixing of reactants. It is shown that Tiron also exerts a positive influence as a dispersant, which impedes agglomeration of gold nanoparticles. The typical average size of GNP synthesized in the present work is close to 7 nm.  相似文献   
9.
The effect of CF4 plasma etching on diamond surfaces, with respect to treatment time, was investigated using scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. SEM observations and Raman spectra indicated an increase in surface roughening on a scale of 10–20 nm, and an increase in crystal defect density was apparent with treatment time in the range of 10 s to 30 min. In contrast, alteration of the diamond surface terminations from oxygen to fluorine was found to be rather rapid, with saturation of the F/C atomic ratio estimated from XPS analysis after treatment durations of 1 min and more. The redox kinetics of Fe(CN)63−/4− was also found to be significantly modified after 10 s of CF4 plasma treatment. This behavior shows that C–F terminations predominantly affect the redox kinetics compared to the effect on the surface roughness and crystal defects. The double-layer capacitance (Cdl) of the electrolyte/CF4 plasma-treated boron-doped diamond interface was found to show a minimum value at 1 min of treatment. These results indicate that a short-duration CF4 plasma treatment is effective for the fabrication of fluorine-terminated diamond surfaces without undesirable surface damage.  相似文献   
10.
Titanium Dioxide, TiO2, is a photocatalyst with a unique characteristic. A surface coated with TiO2 exhibits an extremely high affinity for water when exposed to UV light and the contact angle decreases nearly to zero. Inversely, the contact angle increases when the surface is shielded from UV. This superhydrophilic nature gives a self-cleaning effect to the coated surface and has already been applied to some construction materials, car coatings and so on. We applied this property to the enhancement of boiling heat transfer. An experiment involving the pool boiling of pure water has been performed to make clear the effect of high wettability on heat transfer characteristics. The heat transfer surface is a vertical copper cylinder of 17 mm in diameter and the measurement has been done at saturated temperature and in a steady state. Both TiO2-coated and non-coated surfaces were used for comparison. In the case of the TiO2-coated surface, it is exposed to UV light for a few hours before experiment and it is found that the maximum heat flux (CHF) is about two times larger than that of the uncoated surface. The temperature at minimum heat flux (MHF) for the superhydrophilic surface is higher by 100 K than that for the normal one. The superhydrophilic surface can be an ideal heat transfer surface. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号