首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1377篇
  免费   97篇
  国内免费   12篇
电工技术   43篇
综合类   3篇
化学工业   338篇
金属工艺   37篇
机械仪表   64篇
建筑科学   66篇
能源动力   119篇
轻工业   97篇
水利工程   10篇
石油天然气   21篇
无线电   115篇
一般工业技术   273篇
冶金工业   63篇
原子能技术   4篇
自动化技术   233篇
  2024年   3篇
  2023年   28篇
  2022年   35篇
  2021年   79篇
  2020年   64篇
  2019年   88篇
  2018年   109篇
  2017年   120篇
  2016年   89篇
  2015年   83篇
  2014年   98篇
  2013年   153篇
  2012年   83篇
  2011年   105篇
  2010年   70篇
  2009年   66篇
  2008年   50篇
  2007年   26篇
  2006年   22篇
  2005年   18篇
  2004年   11篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
排序方式: 共有1486条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
This paper presents an energy-efficient switching scheme for successive approximation register (SAR) analogue-to-digital converter (ADC). The proposed scheme employs charge recycling method to keep the capacitor arrays free of transitional energy between bit generations except reset phase. In comparison with the conventional switching scheme, the proposed one achieves 100% transitional energy saving without considering reset phase. In addition, configuration of a 10-bit SAR ADC shows that the proposed switching scheme reduces the capacitor area by 25% compared with the conventional switching scheme.  相似文献   
5.
In this work, neat and modified nanodiamond (ND) particles were embedded into high-density polyethylene (HDPE) membranes to improve hydrophilicity and antifouling properties. The membranes were prepared via thermally induced phase separation (TIPS) method and used for pharmaceutical wastewater treatment in membrane bioreactors (MBR) system. To prevent the agglomeration of ND, it was modified using two methods: thermal carboxylation (ND-COOH) and grafting with polyethylene glycol (ND-PEG). Membranes with different concentration of ND-COOH and ND-PEG nanoparticles ranging from 0.00 to 1.00 wt % were prepared and characterized using a set of analyses including water contact angle, pure water flux, tensile strength, differential scanning calorimeter, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy. It was found that the optimum contents of ND-COOH and ND-PEG nanoparticles were 0.50 wt % and 0.75 wt %, respectively. The interfacial interaction between nanoparticles and HDPE matrix was studied based on Pukanzsky model. To examine the performance of membranes, critical flux, filtration experiment in the MBR, and fouling analysis of membranes were carried out. The results showed that among the fabricated membranes, 0.75 wt % HDPE/ND-PEG membrane had the highest water flux and the best antifouling properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47914.  相似文献   
6.
The Journal of Supercomputing - With the expansion in the use of IoT, increasing the efficiency of these networks has become even more significant. Objects need reliable communications at suitable...  相似文献   
7.
Understanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study. We demonstrate how the complex spectra of EESI-MS are screened in order to extract chemical information and investigate the possibility of interference from gas-phase semivolatile species. During experiments that simulated the Thanksgiving US holiday meal preparation, EESI-MS quantified multiple species, including fatty acids, carbohydrates, siloxanes, and phthalates. Intercomparisons with Aerosol Mass Spectrometer (AMS) and Scanning Mobility Particle Sizer suggest that EESI-MS quantified a large fraction of OA. Comparisons with FIGAERO-CIMS shows similar signal levels and good correlation, with a range of 100 for the relative sensitivities. Comparisons with SV-TAG for phthalates and with SV-TAG and AMS for total siloxanes also show strong correlation. EESI-MS observations can be used with gas-phase measurements to identify co-emitted gas- and aerosol-phase species, and this is demonstrated using complementary gas-phase PTR-MS observations.  相似文献   
8.
Summary Multicomponent intermacromolecular complexes have been prepared from some typical phenolic copolymers with a non-ionic polymer (e.g. PVP), and a polyelectrolyte (e.g. PAA). Some transition metal ions (e.g. Cu(II) and Ni (II)) have been incorporated in the complex through its unreacted co-ordinating groups. The formation of these complexes has been studied by several techniques, such as viscometry, conductometry, potentiometry, IR and UV spectrophotometry. A scheme has been presented to explain the mode of interaction of the various components.  相似文献   
9.
10.

Combined simulation–optimization (CSO) schemes are common in the literature to solve different groundwater management problems, and CSO is particularly well-established in the coastal aquifer management literature. However, with a few exceptions, nearly all previous studies have employed the CSO approach to derive static groundwater management plans that remain unchanged during the entire management period, consequently overlooking the possible positive impacts of dynamic strategies. Dynamic strategies involve division of the planning time interval into several subintervals or periods, and adoption of revised decisions during each period based on the most recent knowledge of the groundwater system and its associated uncertainties. Problem structuring and computational challenges seem to be the main factors preventing the widespread implementation of dynamic strategies in groundwater applications. The objective of this study is to address these challenges by introducing a novel probabilistic Multiperiod CSO approach for dynamic groundwater management. This includes reformulation of the groundwater management problem so that it can be adapted to the multiperiod CSO approach, and subsequent employment of polynomial chaos expansion-based stochastic dynamic programming to obtain optimal dynamic strategies. The proposed approach is employed to provide sustainable solutions for a coastal aquifer storage and recovery facility in Oman, considering the effect of natural recharge uncertainty. It is revealed that the proposed dynamic approach results in an improved performance by taking advantage of system variations, allowing for increased groundwater abstraction, injection and hence monetary benefit compared to the commonly used static optimization approach.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号