首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4637篇
  免费   351篇
  国内免费   16篇
电工技术   91篇
综合类   4篇
化学工业   1276篇
金属工艺   168篇
机械仪表   124篇
建筑科学   129篇
矿业工程   18篇
能源动力   125篇
轻工业   636篇
水利工程   49篇
石油天然气   37篇
无线电   261篇
一般工业技术   1132篇
冶金工业   133篇
原子能技术   38篇
自动化技术   783篇
  2023年   61篇
  2022年   59篇
  2021年   169篇
  2020年   131篇
  2019年   144篇
  2018年   234篇
  2017年   236篇
  2016年   264篇
  2015年   199篇
  2014年   246篇
  2013年   496篇
  2012年   288篇
  2011年   316篇
  2010年   263篇
  2009年   228篇
  2008年   185篇
  2007年   147篇
  2006年   96篇
  2005年   61篇
  2004年   68篇
  2003年   48篇
  2002年   63篇
  2001年   51篇
  2000年   49篇
  1999年   39篇
  1998年   42篇
  1997年   33篇
  1996年   43篇
  1995年   34篇
  1994年   45篇
  1993年   38篇
  1992年   30篇
  1991年   19篇
  1990年   19篇
  1989年   19篇
  1987年   20篇
  1986年   20篇
  1985年   31篇
  1984年   38篇
  1983年   32篇
  1982年   31篇
  1981年   34篇
  1980年   32篇
  1979年   32篇
  1978年   25篇
  1977年   26篇
  1976年   30篇
  1975年   30篇
  1974年   28篇
  1973年   30篇
排序方式: 共有5004条查询结果,搜索用时 46 毫秒
1.
2.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
3.
4.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
5.
6.
The present study was conducted to develop subcritical water extraction (SWE) of Echinacea purpurea flowers. The influence of temperature and extraction time on quality of extracts considering total phenols content, total flavonoids content, antioxidant capacity and extraction yield, was determined. Optimized extraction parameters for maximised investigated responses were as follows: 147.56 °C and 8.43 min. The experimental values agreed with the values predicted, thus indicating the adequacy of central composite experimental design for modelling the SWE of bioactive compounds from E. purpurea. Results of the study also highlighted the potential application of E. purpurea subcritical water extracts as a source of valuable bioactive compounds.  相似文献   
7.
This paper presents an analytical solution to the non-uniform pressure on thick-walled cylinder. The formulation is based on the linear elasticity theory (plain strain) and stress function method. As an example, the proposed solution is used to model the stress distribution due to non-uniform steel reinforcement corrosion in concrete. The model is formulated considering different scenarios of corrosion pressure distribution. It is validated against the finite element model for different cases of non-uniform pressure distributions. The results show that the corrosion-induced cracks are likely to start just beyond the anodic zone. This is confirmed by the experimental tests on concrete cylinder exposed to non-uniform accelerated corrosion of steel reinforcement. The model can be effectively used to calculate the distribution of corrosion-induced stresses in concrete.  相似文献   
8.
9.
The current research work presents a facile and cost–effective co-precipitation method to prepare doped (Co & Fe) CuO and undoped CuO nanostructures without usage of any type of surfactant or capping agents. The structural analysis reveals monoclinic crystal structure of synthesized pure CuO and doped-CuO nanostructures. The effect of different morphologies on the performance of supercapacitors has been found in CV (cyclic voltammetry) and GCD (galvanic charge discharge) investigations. The specific capacitances have been obtained 156 (±5) Fg?1, 168(±5) Fg?1 and 186 (±5) Fg?1 for CuO, Co-doped CuO and Fe-doped CuO electrodes, respectively at scan rate of 5 mVs?1, while it is found to be 114 (±5) Fg?1, 136 (±5) Fg?1 and 170 (±5) Fg?1 for CuO, Co–CuO and Fe–CuO, respectively at 0.5 Ag-1 as calculated from the GCD. The super capacitive performance of the Fe–CuO nanorods is mainly attributed to the synergism that evolves between CuO and Fe metal ion. The Fe-doped CuO with its nanorods like morphology provides superior specific capacitance value and excellent cyclic stability among all studied nanostructured electrodes. Consequently, it motivates to the use of Fe-doped CuO nanostructures as electrode material in the next generation energy storage devices.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号