首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
电工技术   2篇
化学工业   2篇
金属工艺   14篇
能源动力   2篇
无线电   6篇
一般工业技术   11篇
冶金工业   21篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
The change in the hydrogen-trapping behavior of a TiC particle accompanying its coherent to incoherent interfacial-character transition in a 0.05C-0.20Ti-2.0Ni steel that was quenched and tempered in a partially protective argon atmosphere and in ultrahigh vacuum (UHV) has been studied by thermal desorption spectrometry (TDS). The results indicated that (semi)coherent TiC precipitates demonstrate distinctly different hydrogen-trapping features from that of incoherent TiC particles with respect to hydrogen capacity, interaction energy with hydrogen, locations available for hydrogen occupation, and the capability of hydrogen absorption from the environment. The broad (semi)coherent interface of the disc-shaped (semi)coherent TiC precipitate does not trap hydrogen during tempering in a partially protected argon atmosphere, but traps hydrogen during cathodic charging at room temperature. The semicoherent interface traps 1.3 atoms/nm2 of hydrogen at the core of the misfit dislocation with short-time charging (1 hour), which is characterized by a desorption activation energy of 55.8 kJ/mol. The side interface of the (semi)coherent TiC precipitate acts like the broad interface when the precipitate is small. As the precipitate grows, the side interface gradually loses its coherency and results in a simultaneous increase in the trapping activation energy and the binding energy. An increase in the trapping activation energy, i.e., the energy barrier for trapping, makes hydrogen trapping more difficult in cathodic charging at room temperature, while an increase in the binding energy enhances the capability of hydrogen absorption from the atmosphere during heat treatment. An incoherent TiC particle is not able to trap hydrogen during cathodic charging at room temperature due to its high energy barrier for trapping, but absorbs hydrogen during heat treatment at high temperatures. The amount of hydrogen that is trapped by incoherent TiC particles depends on their volume, which strongly indicates that incoherent TiC particles trap hydrogen within them rather than at the particle/matrix interface. Octahedral carbon vacancies are supposedly the hydrogen trap sites in incoherent TiC particles.  相似文献   
2.
A method of determination for solasodine glycosides by using thin-layer chromatography (TLC) immunostaining was investigated. Solasodine glycosides separated by silica gel TLC were transferred to a polyvinylidene difluoride membrane. The membrane was treated with sodium periodate solution followed by bovine serum albumin (BSA), resulting in a solasodine glycoside-BSA conjugate. Conjugation was confirmed by matrix-assisted laser desorption/ionization mass spectrometry. Individual spots were stained by monoclonal antibody against solamargine. Immunostaining of solasodine glycosides was more sensitive compared to other stainings. The newly established immunostaining method can be extended to analysis of the distribution of solasodine glycoside in the plant body.  相似文献   
3.
We present recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system. Here, two steel types are addressed. The first one is a class of low-density twinning-induced plasticity or single phase austenitic TWIP (SIMPLEX) steels with 25–30 wt.% Mn and <4–5 wt.% Al or even <8 wt.% Al when naturally aged. The second one is a class of κ-carbide strengthened austenitic steels with even higher Al content. Here, κ-carbides form either at 500–600°C or even during quenching for >10 wt.% Al. Three topics are addressed in more detail, namely, the combinatorial bulk high-throughput design of a wide range of corresponding alloy variants, the development of microstructure–property relations for such steels, and their susceptibility to hydrogen embrittlement.  相似文献   
4.
Electrochemical hydrogen permeation tests of Fe sheets under two cyclic corrosion test (CCT) conditions were performed to understand hydrogen entry behavior under atmospheric corrosions. Hydrogen entry into 1300 MPa-class high strength steels under two CCT conditions was also investigated using thermal desorption analysis. One CCT consisted of salt spray, dry and wet stages (Salt Spray CCT; SSCCT), and the other consisted of dry and wet stages after NaCl deposition (Dry–Wet CCT; DWCCT). The corrosion rates of Fe and the steels were almost constant under SSCCT and they decreased under DWCCT with time. Nevertheless, both CCTs resulted in increases in hydrogen permeation current and diffusible hydrogen content with time indicating enhancement of hydrogen entry. Corrosion current monitored by means of an atmospheric corrosion monitoring sensor consisting of Fe anode and Ag cathode decreased obviously under dry stage of the CCTs, whereas hydrogen permeation was high at the beginning of the dry stage. The discrepancy between hydrogen entry and corrosion rate indicates that the hydrogen entry is not directly controlled by corrosion rate. Increase in acidity of underlying rust layer with growth of rust layer monitored using a W/WO3 electrode is considered to be one of the factors affecting the hydrogen entry efficiency.  相似文献   
5.
An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of α′ martensite, which forms at the intersection of the ? martensite plates and suppresses the crystallographic reversibility of the γ austenite to ? martensitic transformation.  相似文献   
6.
The highly nonlinear fiber (HNLF)-based lumped fiber Raman amplifiers (LRAs) for four- and eight-channel coarse wavelength division multiplexing (CWDM) transmission systems have been investigated. By using the developed LRA, the four-channel CWDM transmission over conventional single-mode fiber (SMF) with the length of 150 km has been successfully achieved.  相似文献   
7.
The influence of hydrogen entry on ductility was evaluated in a ternary twinning-induced plasticity (TWIP) steel with a composition of Fe–18Mn–0.6C in wt.% using tensile tests. The samples with a thickness of 1.2 mm were charged with hydrogen galvanostatically during the tensile tests. Significant hydrogen content was introduced by the hydrogen-charging. The total elongation was significantly deteriorated from approx. 60% to 30% by the hydrogen-charging. A clear intergranular fracture surface was observed in a vicinity of the sample surface in the hydrogen-charged samples.  相似文献   
8.
Delayed fracture properties of AISI 4135 high strength steels with 1490 and 1310 MPa of tensile strength, represented as B15 and B13, respectively, have been studied by means of slow strain rate test (SSRT) of notched bar specimens after outdoor exposure at rural and coastal areas. The exposed specimens were kept at humid medium before SSRT to reproduce active hydrogen entry influenced by the rust layer and to homogenize hydrogen distribution. The influences of exposure site and exposure time on fracture stress have been investigated. The susceptibility of B15 to delayed fracture was obviously higher than that of B13.  相似文献   
9.
The microstructure and the strength of an iron mechanically milled with various amounts of oxygen (i.e., 0.2, 0.6, and 1.5 mass pct) were studied. The samples were subjected to a mechanical milling in an argon atmosphere for 100 hours followed by consolidating bar rolling to a total reduction of about 86 pct at 700 °C. The microstructure of the steels sensitively changed depending on the oxygen content, i.e., on the volume fraction of the oxide particles. The average grain size decreased from about 0.7 to 0.2 μm with an increase in the amount of oxygen. Moreover, the misorientation distributions of the grain boundaries were different in the samples with various amounts of oxygen. A relatively large fraction of low-angle boundaries arranged crosswise to the rolling axis was registered in the samples with 0.2 and 0.6 pct oxygen, while the near random distribution of the boundary misorientations was obtained in the specimens with 1.5 pct oxygen. The effect of dispersed particles on the structure evolution and the relationship between microstructures and some mechanical properties are discussed.  相似文献   
10.
The initiation of plasticity and the subsequent state in the vicinity of a single grain boundary during indentation-induced deformation were investigated to understand an elementary step of a stress-strain behavior of polycrystalline materials. Nanoindentation measurements on several points on a single grain boundary and the grain interior of an interstitial-free steel and an analysis on the pop-in behavior and the plastic nanohardness were carried out. The pop-in load P c that was obtained on the loading curve is different for each measurement. However, the loading curves overlap one another and the unloading curves coincide as well after the pop-in event. The nanohardness Hn has no dependence on the P c in the range of 150–550 μN. The relation between P c and Δh can be expressed as a simple cubic polynomial function based on a geometrically necessary dislocation loop model. The fitted function differed for various grains with different crystallographic orientations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号