首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   25篇
化学工业   64篇
金属工艺   1篇
机械仪表   7篇
能源动力   2篇
轻工业   24篇
水利工程   1篇
无线电   2篇
一般工业技术   11篇
冶金工业   6篇
原子能技术   5篇
自动化技术   31篇
  2023年   2篇
  2022年   11篇
  2021年   11篇
  2020年   2篇
  2019年   6篇
  2018年   9篇
  2017年   7篇
  2016年   10篇
  2015年   10篇
  2014年   10篇
  2013年   9篇
  2012年   6篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
1.
For any angle α<2π, we show that any connected communication graph that is induced by a set P of n transceivers using omni-directional antennas of radius 1, can be replaced by a strongly connected communication graph, in which each transceiver in P is equipped with a directional antenna of angle α and radius r dir, for some constant r dir=r dir(α). Moreover, the new communication graph is a c-spanner of the original graph, for some constant c=c(α), with respect to number of hops.  相似文献   
2.
A tangent vector field on a surface is the generator of a smooth family of maps from the surface to itself, known as the flow. Given a scalar function on the surface, it can be transported, or advected, by composing it with a vector field's flow. Such transport is exhibited by many physical phenomena, e.g., in fluid dynamics. In this paper, we are interested in the inverse problem: given source and target functions, compute a vector field whose flow advects the source to the target. We propose a method for addressing this problem, by minimizing an energy given by the advection constraint together with a regularizing term for the vector field. Our approach is inspired by a similar method in computational anatomy, known as LDDMM, yet leverages the recent framework of functional vector fields for discretizing the advection and the flow as operators on scalar functions. The latter allows us to efficiently generalize LDDMM to curved surfaces, without explicitly computing the flow lines of the vector field we are optimizing for. We show two approaches for the solution: using linear advection with multiple vector fields, and using non‐linear advection with a single vector field. We additionally derive an approximated gradient of the corresponding energy, which is based on a novel vector field transport operator. Finally, we demonstrate applications of our machinery to intrinsic symmetry analysis, function interpolation and map improvement.  相似文献   
3.
The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost‐isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently‐developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state‐of‐the‐art methods using the Princeton Segmentation Benchmark.  相似文献   
4.
Cladribine (CLD) treats multiple sclerosis (MS) by selectively and transiently depleting B and T cells with a secondary long-term reconstruction of the immune system. This study provides evidence of CLD’s immunomodulatory role in peripheral blood mononuclear cells (PBMCs) harvested from 40 patients with untreated relapsing-remitting MS (RRMS) exposed to CLD. We quantified cytokine secretion from PBMCs isolated by density gradient centrifugation with Ficoll–Paque using xMAP technology on a FlexMap 3D analyzer with a highly sensitive multiplex immunoassay kit. The PBMC secretory profile was evaluated with and without CLD exposure. PBMCs isolated from patients with RRMS for ≤12 months had significantly higher IL-4 but significantly lower IFN-γ and TNF-α secretion after CLD exposure. PBMCs isolated from patients with RRMS for >12 months had altered inflammatory ratios toward an anti-inflammatory profile and increased IL-4 but decreased TNF-α secretion after CLD exposure. CLD induced nonsignificant changes in IL-17 secretion in both RRMS groups. Our findings reaffirm CLD’s immunomodulatory effect that induces an anti-inflammatory phenotype.  相似文献   
5.
The kinetics of a batch solid–liquid extraction of total phenolic compounds (PC) from milled grape seed (Vitis vinifera L. cv. “Frankovka”) using 50% ethanol at different extraction temperatures (25–80 °C) was studied. The maximum yield of PC was 0.13 kgGAE/kgdb after 200 min of extraction in agitated vessel at 80 °C. A new model based on the assumptions of a first order kinetics mechanism for the solid–liquid extraction and a linear equilibrium at the solid–liquid interface was developed. The model involves the concept of broken and intact cells in order to describe two successive extraction periods: a very fast surface washing process followed by slow diffusion of phenolic compounds from grape seeds to the solvent.The proposed model is suited to fit experimental data and to simulate the extraction of phenolic compounds, which was confirmed by the correlation coefficient (r ? 0.965), the root mean square error (RMSE ? 0.003 kgGAE/kgdb) and the mean relative deviation modulus (E ? 2.149%). The temperature influenced both equilibrium partition coefficients of phenolic compounds and transport properties, which is manifested by a relatively high value of activation energy (23–24) kJ/mol and by values of effective diffusivity in seed particles.  相似文献   
6.
Soluble, easily processable polymer–metal complexes with improved optical and dielectric properties for optoelectronic functional materials were obtained. For this, a new polyazomethine (PAZ2) was prepared by the reaction of a siloxane dialdehyde and bis(formyl‐p‐phenoxymethyl) tetramethyldisiloxane with 2,5‐bis(p‐aminophenyl)‐1,3,4‐oxadiazole, and it was used as a ligand for Cu(II), Co(II), and Zn(II) ions on the basis of the presence of the electron‐donor nitrogen atoms from the azomethine group and oxadiazole ring. The structure of the PAZ2 was determined by spectral [Fourier transform infrared (FTIR) and 1H‐NMR spectroscopy] techniques. The metal complexation was proven by FTIR spectroscopy, and the silicon‐to‐metal ratios in the complexes were established by energy‐dispersive X‐ray fluorescence. The new materials were characterized by gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. The optical properties of PAZ2 and the derived metal complexes were studied by ultraviolet–visible and fluorescence spectroscopies. PAZ2 shows fluorescence emission, and it was significantly enhanced by metal complexation. The emission was enhanced by protonation; this behavior is useful, especially for sensors. The electrical properties were investigated by dielectric spectroscopy at various frequencies and temperatures, and this emphasized the existence of dipolar relaxations. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41631.  相似文献   
7.
The suitability of using visible/near infrared spectroscopy (Vis/NIR), as a rapid and non‐destructive technique for monitoring the quality of argan seeds (Argania spinosa Skeels) was studied. The analyzed parameters were the fatty acid composition of argan seed oil, seed moisture content, seed oil content and oil stability index (OSI). The ratio between major unsaturated and saturated fatty acids (U/S) during the oxidation assay at constant temperature was studied. Values from infrared drying were used as a laboratory reference for the moisture. Argan seed oil content was determined by Soxhlet extraction. A fatty acid analysis was carried out by gas chromatography and the OSI was determined by the Rancimat test. Predictive models of argan seed moisture, ratio U/S and OSI showed good accuracy. Therefore, Vis/NIR measurements can be used for controlling several argan seed quality parameters. This procedure might be of interest to the argan oil industry, which is currently in the process of modernization and expansion.  相似文献   
8.
New sodium deoxycholate based poly(ester ether)urethane ionomers were prepared for the development of biomedical materials. A structure–property relationship in the tested biomaterials was established by cross‐examination of the dynamic mechanical and dielectric properties, attenuated total reflection–Fourier transform infrared investigation, thermogravimetric analysis, and surface morphology characterization. A stronger ionic interaction and solvation capacity of the ions and a higher ionic conductivity were manifested in the case of poly(ethylene oxide)‐rich segments than for poly(propylene oxide)‐rich segments in these polyurethane ionomers. The molecular and ionic interactions of the bile‐salt moiety with different polyether cosoft segments influenced chain packing and conformation, supramolecular organization, and the resulting surface morphological microstructures of the polyurethane biomembranes. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42921.  相似文献   
9.
Gangliosides are effective biochemical markers of brain pathologies, being also in the focus of research as potential therapeutic targets. Accurate brain ganglioside mapping is an essential requirement for correlating the specificity of their composition with a certain pathological state and establishing a well-defined set of biomarkers. Among all bioanalytical methods conceived for this purpose, mass spectrometry (MS) has developed into one of the most valuable, due to the wealth and consistency of structural information provided. In this context, the present article reviews the achievements of MS in discovery and structural analysis of gangliosides associated with severe brain pathologies. The first part is dedicated to the contributions of MS in the assessment of ganglioside composition and role in the specific neurodegenerative disorders: Alzheimer’s and Parkinson’s diseases. A large subsequent section is devoted to cephalic disorders (CD), with an emphasis on the MS of gangliosides in anencephaly, the most common and severe disease in the CD spectrum. The last part is focused on the major accomplishments of MS-based methods in the discovery of ganglioside species, which are associated with primary and secondary brain tumors and may either facilitate an early diagnosis or represent target molecules for immunotherapy oriented against brain cancers.  相似文献   
10.
The effects of different silica loadings and elastomeric content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with 5, 10, 15, and 20 vol % of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) SEBS added to total composite volume were investigated. Four silica fillers differing in size (nano‐ vs. micro‐) and in surface properties (untreated vs. treated) were chosen as fillers. Elastomer SEBS was added as impact modifier and compatibilizer at the same time. The morphology of ternary polymer composites revealed by light and scanning electron microscopies was compared with morphology predicted models based on interfacial properties. The results indicated that general morphology of composite systems was determined primarily by interfacial properties, whereas the spherulitic morphology of polypropylene matrix was a result of two competitive effects: nucleation effect of filler and solidification effect of elastomer. Tensile and impact strength properties were mainly influenced by combined competetive effects of stiff filler and tough SEBS elastomer. Spherulitic morphology of polypropylene matrix might affect some mechanical properties additionally. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41486.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号