首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
化学工业   23篇
一般工业技术   1篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2005年   1篇
  1999年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
This research work is devoted to the study of the thermal transport properties of nanocomposites based on PP/EPDM/Clay (Polypropylene/Ethylene Propylene Diene Monomer/Clay). Six different formulations were designed and the corresponding nanocomposites (with 0, 2, 4 and 6% of clay) were prepared via melt mixing. To achieve the goals, densities, specific heat capacities and thermal conductivities were measured as function of temperature and nanocomposites compositions. A new and novel methodology was developed to determine the thermal conductivity which was based on an inverse heat transfer problem. First, assuming a linear relationship for thermal conductivity, the transient heat transfer equation in a solid specimen was numerically solved. The obtained temperature profile was used as the input to an optimisation technique based on genetic algorithm and the parameters of the thermal conductivity relationship were found. The results showed that the specific heat increases both with increasing of temperature and clay contents. It is also increased with the addition of the rubber to the blend. In all samples, the thermal conductivity decreases with increasing of temperature with a linear relationship. In addition, at relatively constant ratios of PP/EPDM, thermal conductivity of nanocomposite and its sensitivity increase with temperature rise. Moreover, at constant value of clay content, the thermal conductivity is decreased with increase of rubber content. The explanations to above findings were also presented and discussed.  相似文献   
2.
Thermoplastic elastomer nanocomposites based on acrylonitrile butadiene rubber (NBR) and polyamide 6 (PA6), with acid functionalized single‐wall carbon nanotubes (SWNT), were prepared via a direct melt‐mixing process in an internal mixer. The influence of SWNT content (0, 0.5, 1, 1.5) on morphological properties of PA6/NBR with different ratios (80/20, 70/30, 60/40) were then investigated. Characterization of nanocomposites was conducted by using transmission electron microscopy, scanning electron microscopy, differential scanning calorimetry, and mechanical properties. Scanning electron microscopy micrographs proved the droplet‐matrix blend morphology in which the size of NBR droplets decreased as the SWNT loading increased, suggesting dispersion of SWNT in the PA6 phase. It was further proved by transmission electron microscopy images, showing homogenous dispersion of SWNT in the PA6 phase. Differential scanning calorimetry results showed a slightly reduced percentage of crystallinity in samples containing SWNT. The mechanical properties of nanocomposites indicated an enhancement in tensile strength, modulus, and hardness on increasing SWNT content. J. VINYL ADDIT. TECHNOL., 22:336–341, 2016. © 2014 Society of Plastics Engineers  相似文献   
3.
Dynamically vulcanized thermoplastic elastomer (TPE) nanocomposites based on polypropylene (PP), ethylene‐propylene diene monomer (EPDM) and cloisite 15A were prepared via direct melt mixing in a co‐rotating twin‐screw extruder. The mixing process was carried out with optimized processing parameters (barrel temperature = 180°C; screw speed = 150 rpm; and feeding rate = 0.2 kg/hr). The formulation used to prepare the nanocomposites was fixed to 75/20/5 (PP/EPDM/Cloisite©15A), expressed in mass fraction. Effect of mixing sequence on the properties of vulcanized and unvulcanized (TPE) nanocomposites prepared under similar conditions was investigated using X‐ray diffraction (XRD) and a tensile testing machine. Results showed that the sequence of mixing does affect the properties of final TPE nanocomposites. Accordingly, nanocomposite samples prepared through mixing the preblended PP/clay masterbatch with EPDM phase, show better clay dispersion within the polymer matrix. J. VINYL ADDIT. TECHNOL., 22:320–325, 2016. © 2014 Society of Plastics Engineers  相似文献   
4.
This research work is devoted to the development of a mathematical model for the simulation of the flow of polymer melts through the metering and die regions of single screw extruders. The sets of the governing equations (flow and energy) are solved using the finite element method. The power‐law model is used to describe the non‐Newtonian rheological behavior of the fluid. The standard Galerkin technique is used in conjunction with the continuous penalty scheme to solve the flow equations. Due to the low thermal diffusivity of the polymer melts, a streamline upwinding Petrov–Galerkin method is used to obtain convergent and stable results for the energy equation. This method is based on the extension of a previously developed scheme. The overall solution strategy is based on the Picard iterative scheme. Simulation results are obtained for the flow of a polypropylene melt through the metering and die zones of a laboratory scale extruder. To validate the proposed model, the results of the computer simulations are compared with experimentally measured mass flow rate and pressure profile. These comparisons show that there is very good agreement between the model predictions and actual data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 676–689, 1999  相似文献   
5.
Organo‐modified nanoclay (Cloisite 30B) was added via direct melt mixing to the acrylonitrile butadiene rubber/poly(vinyl chloride) (PVC/NBR) to fabricate polymer blend/clay nanocomposites. The states of nano‐fillers dispersion were investigated by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). From the morphological study of nanocomposites, it is concluded that exfoliated morphology is obtainable by introduction of 2.5 vol % of nanoclay. The effect of nano‐filler volume content on the mechanical properties of PVC/NBR matrix reinforced by Cloisite 30B was investigated by tensile test. Experimental results show that the Young's modulus and tensile strength of composites can significantly improved with a small amount of nanofiller. Moreover, to investigate the stress–strain behavior of NBR/PVC nanocomposites, seven constitutive models such as Arruda–Boyce, Mooney–Rivilen, Marlow, second order of polynomial, Van der Waals, and third order Odgen were studied and compared with experimental data. Results showed that Malow and second order polynomial model can be used for nanoclay‐filled compound whereas the other models show more deviation from experimental data. Three micromechanical models named liner rule of mixtures (LROM) and the inverse rule of mixtures (IROM). Halpin–Tsai theory was applied to evaluate the dependence of Young modulus of nanocomposites on volume fraction of nanofiller. Two modifying factors were proposed to evaluate the Young's modulus of nanocomposites which could greatly improve the theoretical prediction obtained from inverse rule of mixtures (IROM) and Halpin–Tsai equation. The modifying factors were introduced by adopting an exponential, power‐law and linear factors in the equation. In order to verify the suitability of the modified models, the ensuing theoretical predictions are compared to the other experimental data available in the literature. Good predictability of the modified models is demonstrated in the results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3229–3239, 2013  相似文献   
6.
ABSTRACT

In this study, the effect of various nano-particle type and concentration on the structure, curing, viscosity variation during vulcanisation, and mechanical characteristics of ethylene–propylene–diene monomer (EPDM) rubber foam is reported. Three types of nanoparticle with various dimensional aspects (1D carbon nanotubes, 2D nano clay, and 3D nano silica) are employed to investigate their effect on the fabrication of EPDM rubber foam. It is observed that the properties of the foams were efficiently influenced by the nano-particle shapes and content in the matrix. Nanoparticles may increase cell density and change cell structures. In addition, they can change the curing behaviour of foam rubber by affecting curing rate and scorch time of rubber. In the end, mechanical properties of EPDM foam rubbers investigated by experimental tests and implementing few empirical and constitutional mechanical models. It is very helpful to use suitable nanoparticle to achieve desired properties out of fabricated foams.  相似文献   
7.
8.
Micromechanics of elastomer nanocomposite samples based on polybutadiene (BR), ethylene‐propylene diene terpolymer (EPDM) hyperelastic matrixes prepared via melt compounding was investigated using uniaxial tensile analysis. Constitutive hyperelastic models, including Polynomial, Yeoh, Ogden, Arruda‐Boyce, and Van der Waals were used to determine material parameters in incompressible isotropic elastic strain‐energy functions on the basis of a nonlinear least squares optimization method by fitting the data obtained from uniaxial classic experiments. Effect of nanoclay (0, 3, 5, 7, and 10 phr) content on the simulation accuracy was investigated. Simulation results compared with the experimental data suggested that the Ogden model as the most consistent model investigated here. J. VINYL ADDIT. TECHNOL., 23:21–27, 2017. © 2015 Society of Plastics Engineers  相似文献   
9.
A new nonlinear hyper-viscoelastic constitutive model was developed to describe the mechanical behavior of filled rubbers. It consists of a conventional strain energy density function like Arruda-Boyce weighted by a four-parameter decay relationship, designed as a function of time and the deviatoric part of the first invariant of the left Cauchy-Green deformation tensor. It was implemented in Abaqus code as a user subroutine. A SBR/BR rubber compound filled with carbon black was selected as the test material. The material parameters were determined by calibrating the data from the uniaxial stress–strain tensile, volumetric, and stress relaxation tests using an optimization loop designed in Isight program. To validate the proposed model, a series of simulations were performed on two rubber strips and a rubber cylinder under extensive and compressive loads, respectively. Comparison with their corresponding experimental data confirmed the accuracy, and validity of the proposed model and approach.  相似文献   
10.
In this study, nanocomposites of acrylonitrile butadiene rubber (NBR)/phenolic resin/graphene nanoparticles (GNPs) were prepared using a two-roll mill. According to the results, the addition of GNPs increased the scorch time, vulcanization time, and viscosity of the blends. By adding phenolic resin and in the presence of a higher percentage of acrylonitrile, the modulus and tensile strength increased and the elongation at break decreased. The mechanical properties of the nanocomposites improved with increasing the amount of nanoparticles. The addition of 1.5 phr GNP to the blends containing NBR with 33% and 45% acrylonitrile increased the tensile modulus by 56% and 49%, respectively. The tensile properties of the nanocomposites were also investigated at 50, 25, and 75°C. It was observed that with increasing the amount of nanoparticles, the deterioration of the mechanical properties at elevated temperatures was reduced. Also, thermal stability increased with increasing the amount of nanoparticles in all the samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号