首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3291篇
  免费   199篇
  国内免费   13篇
电工技术   56篇
综合类   12篇
化学工业   1028篇
金属工艺   73篇
机械仪表   93篇
建筑科学   103篇
矿业工程   1篇
能源动力   279篇
轻工业   372篇
水利工程   39篇
石油天然气   24篇
无线电   304篇
一般工业技术   556篇
冶金工业   79篇
原子能技术   15篇
自动化技术   469篇
  2024年   13篇
  2023年   55篇
  2022年   163篇
  2021年   217篇
  2020年   165篇
  2019年   179篇
  2018年   199篇
  2017年   194篇
  2016年   216篇
  2015年   159篇
  2014年   219篇
  2013年   358篇
  2012年   276篇
  2011年   250篇
  2010年   175篇
  2009年   131篇
  2008年   71篇
  2007年   68篇
  2006年   51篇
  2005年   53篇
  2004年   35篇
  2003年   35篇
  2002年   23篇
  2001年   26篇
  2000年   20篇
  1999年   12篇
  1998年   21篇
  1997年   8篇
  1996年   14篇
  1995年   16篇
  1994年   17篇
  1993年   15篇
  1992年   4篇
  1991年   3篇
  1990年   11篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有3503条查询结果,搜索用时 31 毫秒
1.
Gelatin is one of the most important multifunctional biopolymers and is widely used as an essential ingredient in food, pharmaceutical, and cosmetics. Porcine gelatin is regarded as the leading source of gelatin globally then followed by bovine gelatin. Porcine sources are favored over other sources since they are less expensive. However, porcine gelatin is religiously prohibited to be consumed by Muslims and the Jewish community. It is predicted that the global demand for gelatin will increase significantly in the future. Therefore, a sustainable source of gelatin with efficient production and free of disease transmission must be developed. The highest quality of Bovidae-based gelatin (BG) was acquired through alkaline pretreatment, which displayed excellent physicochemical and rheological properties. The utilization of mammalian- and plant-based enzyme significantly increased the gelatin yield. The emulsifying and foaming properties of BG also showed good stability when incorporated into food and pharmaceutical products. Manipulation of extraction conditions has enabled the development of custom-made gelatin with desired properties. This review highlighted the various modifications of extraction and processing methods to improve the physicochemical and functional properties of Bovidae-based gelatin. An in-depth analysis of the crucial stage of collagen breakdown is also discussed, which involved acid, alkaline, and enzyme pretreatment, respectively. In addition, the unique characteristics and primary qualities of BG including protein content, amphoteric property, gel strength, emulsifying and viscosity properties, and foaming ability were presented. Finally, the applications and prospects of BG as the preferred gelatin source globally were outlined.  相似文献   
2.
3.
4.
Silicon - Following our interest in exotic silylenes, here we compare and contrast 20 novel five-membered cyclic silylenes, including saturated (sila)0–4 cyclopentasilylenes (1–10) and...  相似文献   
5.
A simple, cost-effective, and novel chemical sensor for ammonia (NH3) gas detection was developed from polyaniline (PANI)/quail eggshell (QES) composites. QES is a natural waste enriched in calcium carbonate. In this work, pure PANI was synthesized from chemical oxidation method and PANI/QES composites were prepared from physical mixing of QES with the synthesized PANI at different mass ratio. A series of complementary techniques including Fourier transform infrared and ultraviolet-visible spectrometers, scanning electron microscope with energy dispersive detection coupled with mapping, thermogravimetric analysis, and X-ray diffractometer were used to characterize the physicochemical and textural properties of the biocomposites. From the results, PANI/QES composite with a mass ratio of 1 exhibited the lowest NH3 detection limit of 5.24 ppm with a linear correlation coefficient (R2) of close to unity (0.9932) between the signal and NH3 gas concentration. As a whole, the PANI/QES biocomposites synthesized from this work exhibited excellent selectivity toward NH3 gas even in the presence of other gas impurities, such as acetone, ethanol, and hexane. For the sensor reusability, the PANI/QES biocomposites can be reused in the application of NH3 gas detection for at least 4 cycles.  相似文献   
6.
7.
The effects produced by annealing Y2O3 nanopowders on their spark plasma sintering (SPS) behavior are systematically investigated in this work. It is found that the annealed powders display higher sinterability with respect to the as‐received ones. Indeed, the maximum densification level reached from pristine powders is about 97.5%, whereas density decreases when further increasing either the sintering temperature or the dwell time. In contrast, the density of SPS products obtained from pretreated powder monotonically increases with temperature and processing time, thus leading to fully dense materials in 30 min at 1050°C and 60 MPa. Correspondingly, it is found that the annealing treatment markedly inhibits grain coarsening during SPS. Thus, dense translucent samples with grain size below 100 nm can be attained from annealed powders. On the other hand, white‐opaque specimens with significantly coarser microstructures (up to 1‐μm‐sized grains) are obtained when pristine powders are directly processed under the same sintering conditions. Furthermore, it is observed that the annealing treatment of SPS samples in air allows for graphite contamination removal, whereas no improvement in term of light transmittance is produced.  相似文献   
8.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
9.
Neural Computing and Applications - Texture analysis is devised to address the weakness of color-based image segmentation models by considering the statistical and spatial relations among the group...  相似文献   
10.
In this paper, cenosphere particles embedded in AA2014 aluminium matrix are used to fabricate syntactic foam by stir casting method. The particle size is about 100?µm and foam density is about 1990?kg?m?3. Compression tests at strain rate 0.001/s are performed on foam samples to characterise their mechanical properties which are then used in numerical analysis on commercial finite element analysis software ABAQUS/CAE with isotropic elastic-plastic material model. Experimental and numerical results show good conformity in deformation behaviour with elastic and plateau zones showing average deviations less than 5% and 20%, respectively. Foams showed high yield stress and energy absorption capabilities that can be useful in making blast and impact resistant structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号