首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2502篇
  免费   120篇
  国内免费   19篇
电工技术   56篇
综合类   7篇
化学工业   562篇
金属工艺   55篇
机械仪表   68篇
建筑科学   84篇
矿业工程   5篇
能源动力   163篇
轻工业   168篇
水利工程   20篇
石油天然气   16篇
无线电   266篇
一般工业技术   574篇
冶金工业   214篇
原子能技术   16篇
自动化技术   367篇
  2024年   9篇
  2023年   38篇
  2022年   72篇
  2021年   107篇
  2020年   70篇
  2019年   71篇
  2018年   114篇
  2017年   87篇
  2016年   89篇
  2015年   57篇
  2014年   88篇
  2013年   172篇
  2012年   105篇
  2011年   141篇
  2010年   117篇
  2009年   109篇
  2008年   117篇
  2007年   114篇
  2006年   74篇
  2005年   71篇
  2004年   48篇
  2003年   57篇
  2002年   36篇
  2001年   34篇
  2000年   29篇
  1999年   39篇
  1998年   62篇
  1997年   34篇
  1996年   36篇
  1995年   34篇
  1994年   45篇
  1993年   29篇
  1992年   25篇
  1991年   25篇
  1990年   16篇
  1989年   17篇
  1988年   16篇
  1987年   25篇
  1986年   21篇
  1985年   20篇
  1984年   21篇
  1983年   18篇
  1982年   12篇
  1981年   14篇
  1980年   15篇
  1979年   15篇
  1978年   9篇
  1977年   16篇
  1976年   17篇
  1972年   6篇
排序方式: 共有2641条查询结果,搜索用时 296 毫秒
1.
This study presents the development and characterization of PVDF-conjugated polymer nanofiber-based systems. Five different conducting polymers (CPs) were synthesized successfully and used to create the nanofiber systems. The CPs used are polyaniline (PANI), polypyrrole (PPY), polyindole (PIN), polyanthranilic acid (PANA), and polycarbazole (PCZ). Nanofiber systems were produced utilizing the Forcespinning® technique. The nanofiber systems were developed by mechanical stretching. No electrical field or post-process poling was used in the nanofiber systems. The morphology, structure, electrochemical and piezoelectric performance was characterized. All of the nanofiber PVDF/CP systems displayed higher piezoelectric performance than the fine fiber PVDF systems. The PVDF/PPY nanofiber system displays the highest piezoelectric performance of 15.56 V. The piezoelectric performance of the PVDF/CP nanofiber systems favors potential for an attractive source of energy where highly flexible membranes could be used in power actuators, sensors and portable, and wireless devices to mention some.  相似文献   
2.
Many occupations require workers to stand for long periods of time without proper interventions, which causes discomfort in the back and lower limbs. Therefore, this study aims to assess the effectiveness in alleviating body muscle discomfort during prolonged standing through the use of a calf massager. This study was conducted among male workers at a manufacturer with production line workers and the list was obtained from the HR Department and simple random sampling was done by number categorization. A total of 100 respondents (50 respondents for both the control and the experimental groups) participated in this study. The experiment took place in a room with a similar setup for the production line. Each respondent was requested to perform the simulated task for 2 hr. For the experimental group, the calf massager was turned on every 15 min. At every 15‐min interval after turning on the calf massager, respondents from both groups were required to evaluate their discomfort level on a Borg's scale CR‐10 questionnaire. The results showed that the level of body discomfort among respondents in the experimental group reduced (20–30%) compared with that of the control group. Multivariate analysis results revealed that the discomfort rating for the lower back, knees, thighs, calves, and feet was significantly lower (p < .05) among the experimental group compared with the control group. For lower body parts, the lower back region was statistically significant (p < .05) at the 90th, 105th, and 120th min; the thigh region was statistically significant (p < .05) at the 120th min; the knee region was statistically significant (p < .05) at the 105th and 120th min; the calf region was statistically significant (p < .05) at all minute intervals except the 15th and 45th min, while the feet region, was statistically significant at the 105th and 120th min. Therefore, this study indicates that calf massage treatment is capable of reducing body muscle discomfort during prolonged standing and highlights the significance of calf massage.  相似文献   
3.
The custom design of protein–dendron amphiphilic macromolecules is at the forefront of macromolecular engineering. Macromolecules with this architecture are very interesting because of their ability to self-assemble into various biomimetic nanoscopic structures. However, to date, there are no reports on this concept due to technical challenges associated with the chemical synthesis. Towards that end, herein, a new chemical methodology for the modular synthesis of a suite of monodisperse, facially amphiphilic, protein–dendron bioconjugates is reported. Benzyl ether dendrons of different generations (G1–G4) are coupled to monodisperse cetyl ethylene glycol to form macromolecular amphiphilic activity-based probes (AABPs) with a single protein reactive functionality. Micelle-assisted protein labeling technology is utilized for site-specific conjugation of macromolecular AABPs to globular proteins to make monodisperse, facially amphiphilic, protein–dendron bioconjugates. These biohybrid conjugates have the ability to self-assemble into supramolecular protein nanoassemblies. Self-assembly is primarily mediated by strong hydrophobic interactions of the benzyl ether dendron domain. The size, surface charge, and oligomeric state of protein nanoassemblies could be systematically tuned by choosing an appropriate dendron or protein of interest. This chemical method discloses a new way to custom-make monodisperse, facially amphiphilic, protein–dendron bioconjugates.  相似文献   
4.
The cover image is based on the Research Article V2O5/RGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification by Mohan, H et al., DOI: 10.1002/jctb.6238 .

  相似文献   

5.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
6.
The cracks in the workpiece specimens can reduce the fatigue life of any machine components. Since the residual stress has a considerable amount of influence on determining crack formation over the machined surface, it is very essential to analyze the residual stress developed in any machining process. However, it is a very tedious process to compute the residual stress over the machined surface. In the present study, an endeavor has been made to measure and analyze the residual stress of machined silicon steel as a workpiece using the EDM process with different energy distribution. The nano-indentation method was used to compute the residual stress produced over the machined surface. From the experimental results, it was found that the uniform energy distribution has produced higher compressive residual stress owing to the tiny and uniform spark energy distribution. It has also been observed that the tool electrode has a considerable amount of influence on determining development of residual stress in the EDM process.  相似文献   
7.
The electrochemical reduction of carbon dioxide (CO2) to hydrocarbons is a challenging task because of the issues in controlling the efficiency and selectivity of the products. Among the various transition metals, copper has attracted attention as it yields more reduced and C2 products even while using mononuclear copper center as catalysts. In addition, it is found that reversible formation of copper nanoparticle acts as the real catalytically active site for the conversion of CO2 to reduced products. Here, it is demonstrated that the dinuclear molecular copper complex immobilized over graphitized mesoporous carbon can act as catalysts for the conversion of CO2 to hydrocarbons (methane and ethylene) up to 60%. Interestingly, high selectivity toward C2 product (40% faradaic efficiency) is achieved by a molecular complex based hybrid material from CO2 in 0.1 m KCl. In addition, the role of local pH, porous structure, and carbon support in limiting the mass transport to achieve the highly reduced products is demonstrated. Although the spectroscopic analysis of the catalysts exhibits molecular nature of the complex after 2 h bulk electrolysis, morphological study reveals that the newly generated copper cluster is the real active site during the catalytic reactions.  相似文献   
8.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   
9.
A three dimensional, transient model is developed for studying heat transfer, fluid flow and mass transfer for the case of a single-pass laser surface alloying process. The numerical study is performed in a co-ordinate system fixed to the laser which moves with a constant scanning speed. The coupled momentum, energy and species conservation equations are solved using a finite volume technique. Phase change processes are modelled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid-liquid interface. The three-dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. Corresponding experimental results show a good qualitative agreement with the numerical predictions with regard to pool shape and final composition distribution.  相似文献   
10.
Mobile wireless sensor networks (MWSNs) will enable information systems to gather detailed information about the environment on an unprecedented scale. These self‐organizing, distributed networks of sensors, processors, and actuators that are capable of movement have a broad range of potential applications, including military reconnaissance, surveillance, planetary exploration, and geophysical mapping. In many of the foreseen applications, the MWSN will need to form a geometric pattern without assistance from the user. In military reconnaissance, for example, the nodes will be dropped onto the battlefield from a plane and land at random positions. The nodes will be expected to arrange themselves into a predetermined formation in order to perform a specific task. Thus, we present algorithms for forming a line, circle, and regular polygon from a given set of random positions. The algorithms are distributed and use no communication between the nodes to minimize energy consumption. Unlike past studies of geometric problems where algorithms are either tested in simulations where each node has global knowledge of all the other nodes or implemented on a small number of robots, the robustness of our algorithms has been studied with simulations that model the sensor system in detail. The simulations demonstrate that the algorithms are robust against random errors in the sensors and actuators. © 2004 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号