首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学工业   5篇
建筑科学   2篇
能源动力   2篇
无线电   7篇
一般工业技术   3篇
冶金工业   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有20条查询结果,搜索用时 203 毫秒
1.
The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43−, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment.  相似文献   
2.
Wireless Networks - This paper presents a novel IoT-based architecture that utilizes IoT hardware, software, and communication technologies to enable real-time monitoring and management of solar...  相似文献   
3.
2D transition metal dichalcogenides (TMDs) play increasingly significant roles in research and future optoelectronics. However, the large-scale deposition of 2D TMDs remains challenging due to sparse nucleation and substrate dependency. Liquid metals can offer effective solutions to meet these challenges due to their reactive, non-polarized, and templating properties. Here, self-deposition of 2D molybdenum sulfide is shown by introducing a molybdenum precursor onto the surface of a eutectic alloy of gallium and indium (EGaIn). EGaIn serves as an ultra-smooth template and reducing agent for the precursor to form large-scale planar molybdenum sulfides, which is transferrable to any substrate. The molybdenum sulfides form spontaneously on the surface of EGaIn, which has a sufficient potential to drive the cathodic reactions of the deposition process. A highly crystalline 2H-MoS2 is obtained after a final annealing step. This work demonstrates a fundamentally new capability for the formation of large-scale 2D TMDs.  相似文献   
4.
Liquid metals offer unprecedented chemistry. Here it is shown that they can facilitate self‐limiting oxidation processes on their surfaces, which enables the growth of metal oxides that are atomically thin. This claim is exemplified by creating atomically thin hydrated MnO2 using a Galvanic replacement reaction between permanganate ions and a liquid gallium–indium alloy (EGaIn). The “liquid solution”–“liquid metal” process leads to the reduction of the permanganate ions, resulting in the formation of the oxide monolayer at the interface. It is presented that under mechanical agitation liquid metal droplets are established, and simultaneously, hydrated gallium oxides and manganese oxide sheets delaminate themselves from the interfacial boundaries. The produced nanosheets encapsulate a metallic core, which is found to consist of solid indium only, with the full migration of gallium out of the droplets. This process produces core/shell structures, where the shells are made of stacked atomically thin nanosheets. The obtained core/shell structures are found to be an efficient photocatalyst for the degradation of an organic dye under simulated solar irradiation. This study presents a new research direction toward the modification and functionalization of liquid metals through spontaneous interfacial redox reactions, which has implications for many applications beyond photocatalysis.  相似文献   
5.
Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro‐ and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press‐rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically‐conductive tracks in electronic circuits with a self‐healing property. The demonstrated application of co‐fillers, together with liquid metal droplets, can be used for establishing electrically‐conductive printable‐composite tracks for future large‐area flexible electronics.  相似文献   
6.
The solar adsorption refrigeration (SAR) system has economical and environmental aspects that motivate many researches to investigate its capability in cooling system design. In this study, multi-dimensional mathematical models have been generated to predict the coefficient of performance (COP) value of the SAR system as function of the evaporator, condenser, and generator temperatures. Fuzzy logic and regression analysis approaches were implemented to construct a mathematical model for this purpose from one-dimensional collected data that relates COP value separately to condensation, evaporation, and generation temperatures, respectively. The results of COP calculation from the two models were agreed quite well with the measured values. However, the fuzzy logic technique showed excellent accuracy than the regression model when compared to the calculated COP value, as its steps have the optimum nature in constructing the required model.  相似文献   
7.
This article reports on the development of thin films of p- and n-type bismuth telluride compounds which are suitable for microelectromechanical systems (MEMS) thermoelectric energy harvesters. Films were prepared by the pulsed laser deposition technique. It is shown that the thin films of binary Bi-Te alloys outperformed considerably their ternary counterparts. Furthermore, the highest thermoelectric figure of merit (ZT) was found to be 0.39 for the p-type Bi32Te68 alloy, whereas the optimal n-type alloy was Bi25Te75, which was characterized by a relatively low stress gradient.  相似文献   
8.
The chemical interaction of a typical slag of EAF with three different carbon sources, coke, rubber-derived carbon (RDC), coke-RDC blend, was studied in atmospheric pressure at 1823 K (1550 °C). Using an IR-gas analyzer, off-gases evolved from the sample were monitored. While the coke-RDC blend exhibited the best reducing performance in reaction with molten slag, the RDC sample showed poor interaction with the molten slag. The gasification of the coke, RDC, and coke-RDC blend was also carried out under oxidizing conditions using a gas mixture of CO2 (4 wt pct) and Ar (96 wt pct) and it was shown that the RDC sample had the highest rate of gasification step \( C_{0} \mathop{\longrightarrow}\limits{{k_{3} }}{\text{CO}} + nC_{\text{f}} \) (11.6 site/g s (×6.023 × 1023/2.24 × 104)). This may be attributed to its disordered structure confirmed by Raman spectra and its nano-particle morphology observed by FE-SEM. The high reactivity of RDC with CO2 provided evidence that the Boudouard reaction was fast during the interaction with molten slag. However, low reduction rate of iron oxide from slag with RDC can be attributed to the initial weak contact between RDC and molten slag implying that the contact between carbonaceous matter and slag plays significant roles in the reduction of iron oxide from slag.  相似文献   
9.
Prestressed stayed steel columns experience loss of strength and stiffness when exposed to fire conditions. This paper presents results from experimental studies on the behavior of prestressed stayed circular steel columns under fire conditions. Two full scale prestressed stayed steel columns were tested by subjecting the columns to simultaneous gravity (mechanical) loading and fire conditions. In these fire tests, the varied parameters include load level and level of prestressing. Cross sectional temperatures, axial deformations, as well as fire resistance during the fire tests were recorded and measured. The results indicate that prestressed stayed steel columns undergo various failures modes under different combinations of load and prestress ratios. Specifically, load level significantly influence the fire response of prestressed stayed steel columns with higher load level leading to higher contraction and lower fire resistance.  相似文献   
10.
Room-temperature synthesis of 2D graphitic materials (2D-GMs) remains an elusive aim, especially with electrochemical means. Here, it is shown that liquid metals render this possible as they offer catalytic activity and an ultrasmooth templating interface that promotes Frank–van der Merwe regime growth, while allowing facile exfoliation due to the absence of interfacial forces as a nonpolar liquid. The 2D-GMs are formed at low onset potential and can be in situ doped depending on the choice of organic precursors and the electrochemical set-up. The materials are tuned to exhibit porous or pinhole-free morphologies and are engineered for their degree of oxidation and number of layers. The proposed liquid-metal-based room-temperature electrochemical route can be expanded to many other 2D materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号