首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
化学工业   9篇
金属工艺   1篇
能源动力   6篇
无线电   3篇
一般工业技术   3篇
自动化技术   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2017年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Live virtual machine migration is one of the most promising features of data center virtualization technology. Numerous strategies have been proposed for live migration of virtual machines on local area networks. These strategies work perfectly in their respective domains with negligible downtime. However, these techniques are not suitable to handle live migration over wide area networks and results in significant downtime. In this paper we have proposed a Machine Learning based Downtime Optimization (MLDO) approach which is an adaptive live migration approach based on predictive mechanisms that reduces downtime during live migration over wide area networks for standard workloads. The main contribution of our work is to employ machine learning methods to reduce downtime. Machine learning methods are also used to introduce automated learning into the predictive model and adaptive threshold levels. We compare our proposed approach with existing strategies in terms of downtime observed during the migration process and have observed improvements in downtime of up to 15 %.  相似文献   
2.
In this paper, heterojunctions were fabricated by employing p-type Si and thin films of poly-N-epoxipropylcarbazole (PEPC) doped with tetracyanoquinodimethane (TCNQ). The PEPC films were grown on Si wafers at room temperature but with different gravity (g) conditions:-1, 123, 277, and 1107g. Current-voltage (I-V) characteristics of the grown hybrid structures were evaluated as a function temperature (T) ranging from 20/spl deg/C to 60/spl deg/C. It was found that all samples are p-p isotype heterojunctions and the junctions fabricated at a high value of g, i.e., at 277 and 1107 g, showed reversible rectifying properties as a function of device temperature. Whereas the behavior of devices fabricated at 123 and 1 g were rectifying at room temperature, but became almost nonconductive after treating the samples at 60/spl deg/C. Rectification ratio, threshold voltage, reverse saturation current, and junction resistance of the fabricated junctions were evaluated at different temperatures. At T=60/spl deg/C, the devices grown at 1107 g exhibited rectification ratio less than unity which may be attributed to the switching of the depletion at the interface. This has been explained by assuming the generation of carriers are at elevated temperatures in the organic film, and their subsequent emission from the organic to the inorganic side of the heterojunction.  相似文献   
3.
Khan  Mohd Moiz  Singh  Manvendra  Jadhav  G. N.  Mahajani  S. M.  Mandre  Shashank 《SILICON》2020,12(3):677-691
Silicon - The aim of this study is to discuss the importance of characterization of green, waste green and reclaimed sand. The transformations and changes which take place in the green sand, are...  相似文献   
4.
Ammonia borane (AB, NH3BH3) is considered to be a promising hydrogen storage material as it contains 19.6 wt% hydrogen. It is difficult, however, to release hydrogen from AB. Thermolysis, catalytic hydrolysis and heat generated by additional reactive mixtures are usually employed, but these methods have disadvantages that limit their use for portable applications. In this paper, we demonstrate a new approach to release hydrogen, which does not require any catalyst and produces relatively high hydrogen yield and environmentally benign byproducts. It involves nano-aluminum (nAl)/water combustion reaction, which provides heat for AB dehydrogenation and releases additional hydrogen from water. To facilitate higher H2 yield from thermolysis, as compared to hydrolysis, AB is spatially separated from the nAl/water mixture using a concentric cylindrical container. The effect of the container design on hydrogen generation is studied and optimized. This study also includes transient temperature and pressure measurements, and product characterization using mass spectrometer and 11B NMR. This approach provides H2 yield up to 9.5 wt% on material basis. Our experimental results and analysis show that a proposed power source based on this method is promising for portable electronic devices.  相似文献   
5.
6.
In this paper, temperature-dependent current–voltage (IV) characteristics of poly-N-epoxipropyl carbazole (PEPC) are evaluated. The PEPC is doped with anthracene (An) and deposited on nickel (Ni) substrate with a centrifugal machine. The films are grown at room temperature but at varying gravity conditions, such as 1g, 123g, 277g and 1107g, where g is acceleration due to gravity. It is demonstrated that the space charge created by the trapped charges controls the device's characteristics. Thus, by employing trapped space charge limited current model, charge transport parameters are estimated and discussed as a function of ambient temperatures. It is learned that the trap factor, free carrier density, effective mobility and trap density are quasi-linear functions of temperatures. It is shown that devices fabricated at 277g exhibit superior electrical properties compared to 1g, 123g and 1107g devices. It has been demonstrated that an organic semiconductor device performance could be enhanced by optimizing its fabrication parameters.  相似文献   
7.
Hydrolysis of ammonia borane (AB) is attractive as a chemical method for hydrogen storage. The use of catalysts is, however, usually required. In the present paper, two new methods for releasing hydrogen from AB and water are investigated which do not involve any catalyst. One method is based on combustion of AB mixtures with nanoscale aluminum powder and gelled water. It is shown experimentally that these mixtures, upon ignition, exhibit self-sustained combustion with hydrogen release from both AB and water. The other method involves external heating of aqueous AB solutions to temperatures 120 °C or higher, under argon pressure to avoid water boiling. To clarify the reaction mechanism, isotopic experiments using D2O instead of H2O were conducted. It is shown that heating AB/D2O solution to temperatures 117–170 °C releases 3 equiv. of hydrogen per mole AB, where 2–2.1 equiv. originate from AB and 0.9–1 equiv. from water. The prospects of both methods for hydrogen storage are discussed.  相似文献   
8.
Cytokines are signaling proteins that were first characterized as components of the immune response, but have been found to have pleiotropic effects in diverse aspects of body function in health and disease. They are secreted by numerous cells and are used extensively in intercellular communications to produce different activities, including intricate processes engaged in the ontogenetic development of the brain. This review discusses factors involved in brain growth regulation and recent findings exploring cytokine signaling pathways during development of the central nervous system. In view of existing data suggesting roles for neurotropic cytokines in promoting brain growth and repair, these molecules and their signaling pathways might become targets for therapeutic intervention in neurodegenerative processes due to diseases, toxicity, or trauma.  相似文献   
9.
In this paper the effect of temperature on the electrical properties of organic semiconductor disperse orange dye 25 (OD) have been examined. Thin films of OD have been deposited on In2O3 substrates using a centrifugal machine. DC current‐voltage (I‐V) characteristics of the fabricated devices (Al/OD/In2O3) have been evaluated at varying temperatures ranging from 40 to 60°C. A rectification behavior in these devices has been observed such that the rectifying ratio increases as a function of temperature. I‐V characteristics observed in Al/OD/In2O3 devices have been classified as low temperature (≤ 50°C) and high temperature characteristics (approximately 60°C). Low temperature characteristics have been explained on the basis of the charge transport mechanism associated with free carriers available in OD, whereas high temperature characteristics have been explained on the basis of the trapped space‐charge‐limited current. Different electrical parameters such as traps factor, free carrier density, trapped carrier density, trap density of states, and effective mobility have been determined from the observed temperature dependent I‐V characteristics. It has been shown that the traps factor, effective mobility, and free carrier density increase with increasing values of temperature, whilst no significant change has been observed in the trap density of states.  相似文献   
10.
Moiz SA  Nahhas AM  Um HD  Jee SW  Cho HK  Kim SW  Lee JH 《Nanotechnology》2012,23(14):145401
A novel stamped hybrid solar cell was proposed using the stamping transfer technique by stamping an active PEDOT:PSS thin layer onto the top of silicon nanowires (SiNWs). Compared to a bulk-type counterpart that fully embeds SiNWs inside PEDOT:PSS, an increase in the photovoltaic efficiency was observed by a factor of ~4.6, along with improvements in both electrical and optical responses for the stamped hybrid cell. Such improvements for hybrid cells was due to the formation of well-connected and linearly aligned active PEDOT:PSS channels at the top ends of the nanowires after the stamping process. These stamped channels facilitated not only to improve the charge transport, light absorption, but also to decrease the free carriers as well as exciton recombination losses for stamped hybrid solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号