首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学工业   6篇
机械仪表   1篇
冶金工业   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2011年   1篇
  2005年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
The Sulfolobus solfataricus, strain MT4, ß-glycosidase(Ssßgly) is a thermophilic member of glycohydrolasefamily 1. To identify active-site residues, glutamic acids 206and 387 have been changed to isosteric glutamine by site-directedmutagenesis. Mutant proteins have been purified to homogeneityusing the Schistosoma japonicum glutathione S-transferase (GST)fusion system. The proteolytic cleavage of the chimeric proteinwith thrombin was only obtainable after the introduction ofa molecular spacer between the GST and the Ssß-glydomains. The Glu387 Gin mutant showed no detectable activity,as expected for the residue acting as the nucleophile of thereaction. The Glu206 Gin mutant showed 10- and 60-fold reducedactivities on aryl-galacto and aryl-glucosides, respectively,when compared with the wild type. Moreover, a significant Kmdecrease with plo-nitrophenyl-ß-D-glucoside was observed.The residual activity of the Glu206 Gln mutant lost the typicalpH dependence shown by the wild type. These data suggest thatGlu206 acts as the general acid/base catalyst in the hydrolysisreaction.  相似文献   
3.
The in vivo and in vitro effects of the insecticide deltamethrin (DM) on hepatic cytochrome P450 (Cyt P450) monooxygenase were examined in adult carp. The in vivo experiments were carried out with 0.2 microgram/l DM at 20 degrees C. The changes in the hepatic microsomal Cyt P450 content and the Cyt P450-dependent monooxygenase activities were studied in DM-treated fish. Although there were no changes in the Cyt P450 content during the exposure time, after treatment for 24 h all the investigated isoenzyme activities (para-nitrophenetole-O-deethylase, p-NPOD; aminopyrene-N-demethylase, APND; ethylmorphine-N-demethylase, EMND; 7-ethoxycoumarin-O-deethylase, ECOD; and ethoxyresorufin-O-deethylase, EROD) were significantly inhibited. After 72 h, all the activities were still lower than in the control animals. In vitro incubation of liver microsomes with DM led to a concentration-dependent decrease in total microsomal Cyt P450 content. A complete loss of Cyt P450 occurred after a 5-min incubation with 60 microM DM. The maximum in the difference spectra of microsomes was shifted to higher wavelength, showing the strong interaction of DM with Cyt P450. EROD and ECOD activities were inhibited by DM. The in vitro kinetic results on ECOD revealed that the inhibition was of non-competitive type, with K1 = 9.8 +/- 2.3 microM. This study indicates important biochemical effects of DM in fish liver, and suggests that exposure to DM may cause loss of the Cyt P450-dependent metabolism in fish.  相似文献   
4.
In the field of biocatalysis and the development of a bio-based economy, hemicellulases have attracted great interest for various applications in industrial processes. However, the study of the catalytic activity of the lignocellulose-degrading enzymes needs to be improved to achieve the efficient hydrolysis of plant biomasses. In this framework, hemicellulases from hyperthermophilic archaea show interesting features as biocatalysts and provide many advantages in industrial applications thanks to their stability in the harsh conditions encountered during the pretreatment process. However, the hemicellulases from archaea are less studied compared to their bacterial counterpart, and the activity of most of them has been barely tested on natural substrates. Here, we investigated the hydrolysis of xyloglucan oligosaccharides from two different plants by using, both synergistically and individually, three glycoside hydrolases from Saccharolobus solfataricus: a GH1 β-gluco-/β-galactosidase, a α-fucosidase belonging to GH29, and a α-xylosidase from GH31. The results showed that the three enzymes were able to release monosaccharides from xyloglucan oligosaccharides after incubation at 65 °C. The concerted actions of β-gluco-/β-galactosidase and the α-xylosidase on both xyloglucan oligosaccharides have been observed, while the α-fucosidase was capable of releasing all α-linked fucose units from xyloglucan from apple pomace, representing the first GH29 enzyme belonging to subfamily A that is active on xyloglucan.  相似文献   
5.
6.
The increasing interest for environmentally friendly technologies is driving the transition from fossil-based economy to bioeconomy. A key enabler for circular bioeconomy is to valorize renewable biomasses as feedstock to extract high value-added chemicals. Within this transition the discovery and the use of robust biocatalysts to replace toxic chemical catalysts play a significant role as technology drivers. To meet both the demands, we performed microbial enrichments on two energy crops, used as low-cost feed for extremophilic consortia. A culture-dependent approach coupled to metagenomic analysis led to the discovery of more than 300 glycoside hydrolases and to characterize a new α-glucosidase from an unknown hyperthermophilic archaeon. Aglu1 demonstrated to be the most active archaeal GH31 on 4Np-α-Glc and it showed unexpected specificity vs. kojibiose, revealing to be a promising candidate for biotechnological applications such as the liquefaction/saccharification of starch.  相似文献   
7.
Glycosidases, the enzymes responsible in nature for the catabolism of carbohydrates, are well-studied catalysts widely used in industrial biotransformations and oligosaccharide synthesis, which are also attractive targets for drug development. Glycosidases from hyperthermophilic organisms (thriving at temperatures > 85 °C) are also interesting models to understand the molecular basis of protein stability and to produce robust tools for industrial applications. Here, we review the results obtained in the last two decades by our group on a β-glycosidase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Our findings will be presented in the general context of the stability of proteins from hyperthermophiles and of the chemo-enzymatic synthesis of oligosaccharides.  相似文献   
8.
9.
Transglycosylation reactions (autocondensation of the substrate or transfer of the glycon donor moiety to different acceptors) with the hyperthermophilic glycosynthase from Sulfolobus solfataricus acting in dilute sodium formate buffer at pH 4.0 are reported; the use of 4-nitrophenyl beta-glucopyranoside as both donor and acceptor in the self-transfer reaction and a highly productive reaction with 1.1 M 2-nitrophenyl beta-glucopyranoside were possible. Interesting effects, governed by the anomeric configuration and lipophilicity of heteroacceptors, on the regioselectivity and yield of reactions were found for the first time with this enzyme and are discussed. The results demonstrate the unexplored synthetic potential of this glycosynthase; the tuning of the reaction conditions and the choice of different donors/acceptors can lead to products of applicative interest.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号