首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   11篇
  国内免费   1篇
电工技术   1篇
综合类   1篇
化学工业   54篇
金属工艺   3篇
机械仪表   3篇
建筑科学   7篇
矿业工程   1篇
能源动力   14篇
轻工业   35篇
水利工程   2篇
无线电   8篇
一般工业技术   22篇
冶金工业   9篇
原子能技术   8篇
自动化技术   16篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   7篇
  2019年   8篇
  2018年   2篇
  2017年   12篇
  2016年   12篇
  2015年   7篇
  2014年   13篇
  2013年   22篇
  2012年   19篇
  2011年   13篇
  2010年   18篇
  2009年   15篇
  2008年   8篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有184条查询结果,搜索用时 31 毫秒
1.
Ferrites are an important group of magnetic materials which are used as absorbers. The incorporation of ferrite and conducting polymer achieves great enhancement in microwave absorption properties. The nanocomposites of hexagonal ferrites embedded by conducting polymers such as polypyrrole, polyaniline and polythiophene (PTH) have been paid much attention. In the present study, strontium hexagonal ferrite doped by Zr and Zn with the final formula of SrFe12-x(ZrZn)0.5xO19 considering x = 0.9 and embedded by PTH was produced to achieve a nanocomposite with the highest microwave absorbing ability. In this study, after synthesis of SrFe12O19(ZrZn)0.5xO19 and PTH, the nanocomposite was prepared by in situ polymerization. Wrapping the ferrite particles and PTH chains could form nanocomposite properly, and therefore acceptable interactions were observable between SrFe12-x(ZrZn)0.5xO19ferrite particles and PTH polymer chains in the composites. Assessing the X-ray diffraction (XRD) patterns of SrFe12-x(ZrZn)0.5xO19, PTH, and PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite indicated that the PTH characteristic peak shifts slightly and its peak intensity reduces, which may be attribute to the coating of PTH polymer chains onto SrFe12-x(ZrZn)0.5xO19 particles. We revealed also lower magnetic properties in the obtained nanocomposite. The morphological assessment also suggested that PTH could effectively coat the SrFe12-x(ZrZn)0.5xO19 particles. The synergistic effect of SrFe12-x(ZrZn)0.5xO19 particle plus PTH leads to microwave absorption percentage higher than 95% by PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite. Overall, nanocomposite creating by coupling interaction between SrFe12-x(ZrZn)0.5xO19 particles (x = 0.9) and PTH can effectively lead to achieve the highest rate of absorption of electromagnetic waves.  相似文献   
2.
3.
High molecular weight with long linear side branches are frequently used in oil pipelines as one of the main classes of drag reducer agents (DRAs). We studied the effects of polymerization conditions, including reaction temperature, monomer concentration and cocatalyst concentration ratio (Al/Ti), on the polymerization yield and molecular weight of the resultant poly(1-hexene) made by Ziegler–Natta catalyst and their consequent effects on the drag reduction efficiency in a loop test. The experimental results verified that the catalyst activity increased from 115 to 220 kgPH/molTi.atm, while the molecular weight of poly(1-hexene) dropped from 2100 to 1030 kDa, as the reaction temperature was increased from 0 to 50 °C. The loop test results also revealed that the highest pressure drop was achieved using the polymer synthesized at 0 °C and by subsequent increase in reaction temperature the pressure drop decreased. Furthermore, the catalyst activity increased from 143 to 262 kgPH/molTi.atm by increasing Al/Ti ratio, while the molecular weight increased up to a maximum level of 1500 kDa at Al/Ti = 143 and decreased at higher cocatalyst contents. Similarly, the results showed the maximum pressure drop of 20 % at Al/Ti = 143. Finally, by increasing monomer concentration, the catalyst activity and polymer molecular weight increased from 75 to 262 kgPH/molTi.atm for the former, and from 700 to 1800 kDa for the latter which resulted in maximum pressure drop by 25 %. Moreover, the pressure drop for each utilized poly(1-hexene) was increased proportionately with DRA’s concentration, and interestingly enough, DRAs were further effective at more turbulent flows with higher Reynolds numbers.  相似文献   
4.
Digital Image Correlation algorithms capable of determining continuous displacement fields are receiving growing attention in the field of mechanical properties identification. In this paper, we develop an Improved Spectral Approach (ISA) to reconstruct continuous displacements based on their Fourier decomposition. This approach leads to a time and memory‐efficient algorithm, thanks to the fast Fourier transform. Moreover, the Fourier‐based decomposition enables accurate heterogeneous measurements. Improvements consist in increasing the accuracy and convergence rate as well as dealing with non‐periodic displacements and images. Furthermore, a theoretical framework is presented to quantify the noise sensitivity of the ISA from which useful information is retrieved. The approach is evaluated using synthetic images deformed by heterogeneous displacement fields. Comparisons show that the introduced modifications lead to lower uncertainties by one order of magnitude in the case of non‐periodic images and displacement field studied. Moreover, first‐order (SO1) and second‐order (SO2) subset‐based Digital Image Correlation algorithms are compared with the ISA. The comparisons herein reveal that the uncertainties of the ISA are 6–9 times smaller than those of the SO1 due to insufficiency of the first‐order shape function for the estimation of heterogeneous displacements, while being slightly smaller than those of the SO2. Moreover, as the image smoothness decreases, the uncertainties of the SO2 deviate from those of the ISA and the exact displacements. The presented approach shows great potentials for challenging applications such as strain measurements at microstructural levels.  相似文献   
5.
6.
7.
Corrosion and time–dependent oxide film growth on AA5052 Aluminum alloy in 0.25M Na2SO4 solution containing H2O2 was studied using electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometric and open circuit potential monitoring. It was found that sequential addition of H2O2 provokes passivation of AA5052 which ultimately thickens the oxide film and brings slower corrosion rates for AA5052. H2O2 facilitates kinetics of oxide film growth on AA 5052 at 25° and 60 °C which is indicative of formation of a thick barrier film that leads to an increment in the charge transfer resistance. Pitting incubation time increases by introduction of H2O2 accompanied by lower pitting and smoother surface morphologies. At short exposure (up to 8 h) to H2O2–containing solution, the inductive response at low frequencies predominantly determined the corrosion mechanism of AA5052. On the other hand, at prolonged exposure times (more than 24 h) to 0.25M Na2SO4+1vol% H2O2 solution, thicker oxide layers resulted in the mixed inductive–Warburg elements in the spectra.  相似文献   
8.
Nanosized hydroxyapatite (HA) powders exhibit a greater surface area than coarser crystals and are expected to show an improved bioactivity. In addition, properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. The aim of this study was to prepare and characterize silicon and magnesium co-doped fluorapatite (Si–Mg–FA) with a chemical composition of Ca9.5Mg0.5 (PO4)5.5(SiO4)0.5F2 by the high-energy ball milling method. Characterization techniques such as X-ray diffraction analysis (XRD), Fourier transformed infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM) were utilized to investigate the structural properties of the obtained powders. Dissolution behavior was evaluated in simulated body fluid (SBF) and physiological normal saline solution at 37 °C for up to 28 days. The results of XRD and FTIR showed that nanocrystalline single-phase Si–Mg–FA powders were synthesized after 12 h of milling. In addition, incorporation of magnesium and silicon into fluorapatite lattice decreased the crystallite size from 53 nm to 40 nm and increased the lattice strain from 0.220% to 0.296%. Dissolution studies revealed that Si–Mg–FA in comparison to fluorapatite (FA), releases more Ca, P and Mg ions into SBF during immersion. 175 ppm Ca, 33.5 ppm P and 48 ppm Mg were detected in the SBF containing Si–Mg–FA after 7days of immersion, while for FA, it was 75 ppm Ca, 21.5 ppm P and 29 ppm Mg. Release of these ions could improve the bioactivity of the obtained nanopowder. It could be concluded that the prepared nanopowders have structural properties such as crystallite size (~40 nm), crystallinity degree (~40%) and chemical composition similar to biological apatite. Therefore, prepared Si–Mg–FA nanopowders are expected to be appropriate candidates for bone substitution materials and also as a phase in polymer or ceramic-based composites for bone regeneration in tissue engineering applications.  相似文献   
9.
Solubility information for CO2 in different ionic liquids, ILs, in part can potentially be used to select a specific IL for the separation of CO2 from hydrocarbon fluids. Unfortunately, not all CO2–IL systems have been experimentally described at similar temperatures and pressures; therefore, a direct comparison of performance by process simulation is not always possible. In the extreme cases, the design of a CO2 separation process may require predicting the CO2–IL equilibria for which there are no available solubility data. To address the need for this information, a semi‐empirical correlation was developed to estimate the dissolution of CO2 in CO2–IL solvent systems. The theoretical COSMO–RS calculation method was used to calculate the chemical potential of CO2 in a wide variety of ILs and the Soave–Redlich–Kwong equation was used to calculate the fugacity coefficient of the CO2 vapour phase. The model was correlated with available literature data, yielding an average error of AAR = 23% and small bias. © 2012 Canadian Society for Chemical Engineering  相似文献   
10.
Bis(2‐phenylindenyl)zirconium dichloride (bis(2‐PhInd)ZrCl2) catalyst was synthesized via the preparation of bis(2‐phenylindenyl)zirconium dimethyl (bis(2‐PhInd)ZrMe2) followed by chlorination to obtain the catalyst. Performance of the catalyst for ethylene polymerization and its kinetic behavior were investigated. Activity of the catalyst increased as the [Al]:[Zr] molar ratio increased to 2333:1, followed by reduction at higher ratios. The maximum activity of the catalyst was obtained at a polymerization temperature of 60 °C. The rate‐time profile of the reaction was of a decay type under all conditions. A general kinetic scheme was modified by considering a reversible reaction of latent site formation, and used to predict dynamic polymerization rate and viscosity average molecular weight of the resulting polymer. Kinetic constants were estimated by the Nelder‐Mead numerical optimization algorithm. It was shown that any deviation from the general kinetic behavior can be captured by the addition of the reversible reaction of latent site formation. Simulation results were in satisfactory agreement with experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号