首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   16篇
电工技术   5篇
化学工业   45篇
金属工艺   3篇
机械仪表   10篇
建筑科学   5篇
矿业工程   1篇
能源动力   12篇
轻工业   38篇
水利工程   1篇
石油天然气   6篇
无线电   31篇
一般工业技术   56篇
冶金工业   4篇
原子能技术   1篇
自动化技术   25篇
  2024年   2篇
  2023年   11篇
  2022年   17篇
  2021年   16篇
  2020年   16篇
  2019年   20篇
  2018年   15篇
  2017年   16篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   20篇
  2012年   8篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1985年   1篇
  1984年   3篇
  1980年   1篇
  1975年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有243条查询结果,搜索用时 0 毫秒
1.
Soft conductive materials should enable large deformation while keeping high electrical conductivity and elasticity. The graphene oxide (GO)‐based sponge is a potential candidate to endow large deformation. However, it typically exhibits low conductivity and elasticity. Here, the highly conductive and elastic sponge composed of GO, flower‐shaped silver nanoparticles (AgNFs), and polyimide (GO‐AgNF‐PI sponge) are demonstrated. The average pore size and porosity are 114 µm and 94.7%, respectively. Ag NFs have thin petals (8–20 nm) protruding out of the surface of a spherical bud (300–350 nm) significantly enhancing the specific surface area (2.83 m2 g?1). The electrical conductivity (0.306 S m?1 at 0% strain) of the GO‐AgNF‐PI sponge is increased by more than an order of magnitude with the addition of Ag NFs. A nearly perfect elasticity is obtained over a wide compressive strain range (0–90%). The strain‐dependent, nonlinear variation of Young's modulus of the sponge provides a unique opportunity as a variable stiffness stress sensor that operates over a wide stress range (0–10 kPa) with a high maximum sensitivity (0.572 kPa?1). It allows grasping of a soft rose and a hard bottle, with the minimal object deformation, when attached on the finger of a robot gripper.  相似文献   
2.
Chimeric antigen receptor (CAR) T cell therapy has ushered in a new era in cancer treatment. Remarkable outcomes have been demonstrated in patients with previously untreatable relapsed/refractory hematological malignancies. However, optimizing efficacy and reducing the risk of toxicities have posed major challenges, limiting the success of this therapy. The tumor microenvironment (TME) plays an important role in CAR T cell therapy’s effectiveness and the risk of toxicities. Increasing research studies have also identified various biomarkers that can predict its effectiveness and risk of toxicities. In this review, we discuss the various aspects of the TME and biomarkers that have been implicated thus far and discuss the role of creating scoring systems that can aid in further refining clinical applications of CAR T cell therapy and establishing a safe and efficacious personalised medicine for individuals.  相似文献   
3.
Over the past few decades, face recognition has become the most effective biometric technique in recognizing people’s identity, as it is widely used in many areas of our daily lives. However, it is a challenging technique since facial images vary in rotations, expressions, and illuminations. To minimize the impact of these challenges, exploiting information from various feature extraction methods is recommended since one of the most critical tasks in face recognition system is the extraction of facial features. Therefore, this paper presents a new approach to face recognition based on the fusion of Gabor-based feature extraction, Fast Independent Component Analysis (FastICA), and Linear Discriminant Analysis (LDA). In the presented method, first, face images are transformed to grayscale and resized to have a uniform size. After that, facial features are extracted from the aligned face image using Gabor, FastICA, and LDA methods. Finally, the nearest distance classifier is utilized to recognize the identity of the individuals. Here, the performance of six distance classifiers, namely Euclidean, Cosine, Bray-Curtis, Mahalanobis, Correlation, and Manhattan, are investigated. Experimental results revealed that the presented method attains a higher rank-one recognition rate compared to the recent approaches in the literature on four benchmarked face datasets: ORL, GT, FEI, and Yale. Moreover, it showed that the proposed method not only helps in better extracting the features but also in improving the overall efficiency of the facial recognition system.  相似文献   
4.
We produced UV curable lenses with properties blocking short wave UV light. In the UV-curable formulations, we used an oligomer (Ac-PEEK) with another urethan oligomer (Mw = 2000). Radically active, molecular weight controlled Ac-PEEK was obtained by reacting 2-hydroxyl ethyl methacrylate with molecular- weight- controlled and isocyanate terminated PEEK (Mn = 4500). We characterized all synthesized monomer, oligomer and optical materials with UV/Vis spectrophotometer with interferogram, elemental analyser, mass spectrophotometer, proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermal gravimetric analyzer, differential scanning calorimeter, scanning electron microscopy and gas chromatography. Results suggested that newly synthesized oligomer with the structure of PEEK absorbs short wave UV-light. Ageing tests [ISO 11979-5, Ophthalmic implants—intraocular lenses (IOL)—Part 5: Biocompatibility] performed on the IOL materials were successful. High contact angle of the obtained lenses suggests that all lenses were hydrophobic and SEM results revealed that lenses are morphologically homogeneous. Based on all positive properties just mentioned, we safely conclude that the lenses produced in this study are very promising for IOL production.  相似文献   
5.
This paper examines Vaudenay's privacy model, which is one of the first and most complete privacy models that featured the notion of different privacy classes. We enhance this model by introducing two new generic adversary classes, k‐strong and k‐forward adversaries where the adversary is allowed to corrupt a tag at most k times. Moreover, we introduce an extended privacy definition that also covers all privacy classes of Vaudenay's model. In order to achieve highest privacy level, we study low cost primitives such as physically unclonable functions (PUFs). The common assumption of PUFs is that their physical structure is destroyed once tampered. This is an ideal assumption because the tamper resistance depends on the ability of the attacker and the quality of the PUF circuits. In this paper, we have weakened this assumption by introducing a new definition k‐resistant PUFs. k‐PUFs are tamper resistant against at most k attacks; that is, their physical structure remains still functional and correct until at most kth physical attack. Furthermore, we prove that strong privacy can be achieved without public‐key cryptography using k PUF‐based authentication. We finally prove that our extended proposal achieves both reader authentication and k‐strong privacy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
In recent year, new nanocomposite electrolytes materials have been developed for low-temperature ceramic fuel cells (CFCs). To further improve the performance of CFCs based on the nanocomposite electrolyte, compatible active anode with sufficient low polarizations is needed. To improve the performance of anode, i.e. to enlarge tripe phase boundaries (TPB), anode materials with both porous structure and phase homogeneity of metal and ceramic are preferred. In the present study, we developed a novel microwave-assisted template-, surfactant-free synthesis route for mesoporous CuO–Ce0.8Sm0.2O2−δ composite anode by homogeneous precipitation of microspherical precursor in aqueous solutions followed by calcination. The composite anode sample was characterized by thermogravimetry analysis, X-ray diffraction, SEM, EDX, etc. The characterization results indicated that CuO–SDC composite anode with mesoporous structure was prepared and both SDC and CuO phases were homogenously distributed. Fuel cells have been constructed using as-prepared composite as anodes and lithiated NiO as cathode based on the SDC–carbonate nanocomposite electrolyte. Fuel cell performance tests indicated that the cell with mesoporous Cu–SDC anode had better performance than conventional Cu–SDC anode prepared by solid-state method.  相似文献   
7.
The novel core–shell nanostructured SDC/Na2CO3 composite has been demonstrated as a promising electrolyte material for low-temperature SOFCs. However, as a nanostructured material, stability might be doubted under elevated temperature due to their high surface energy. So in order to study the thermal stability of SDC/Na2CO3 nanocomposite, XRD, BET, SEM and TGA characterizations were carried on after annealing samples at various temperatures. Crystallite sizes, BET surface areas, and SEM results indicated that the SDC/Na2CO3 nanocomposite possesses better thermal stability on nanostructure than pure SDC till 700 °C. TGA analysis verified that Na2CO3 phase exists steadily in the SDC/Na2CO3 composite. The performance and durability of SOFCs based on SDC/Na2CO3 electrolyte were also investigated. The cell delivered a maximum power density of 0.78 W cm−2 at 550 °C and a steady output of about 0.62 W cm−2 over 12 h operation. The high performances together with notable thermal stability make the SDC/Na2CO3 nanocomposite as a potential electrolyte material for long-term SOFCs that operate at 500–600 °C.  相似文献   
8.
9.
10.
This report investigates the spraying of nano‐silica and fullerene on cucumber leaves to expose their ability to reduce the toxicity and uptake of metal(loid)s. Cucumber seedlings were randomly divided into six treatment groups: 10 mg/L nano‐SiO2, 20 mg/L nano‐SiO2, 10 mg/L Fullerene, 20 mg/L Fullerene, 5 mg/L Fullerene + 5 mg/L nano‐SiO2, and 10 mg/L Fullerene + 10 mg/L nano‐SiO2. Nano‐silica‐treated plants exhibited evidence of the potential mitigation of metal(loid)s poisoning. Specifically, results showed that 20 mg/L of nano‐silica promoted Cd uptake by plants; comparatively, 10 mg/L of nano‐silica did not significantly increase the silicon content in plants. Both low‐concentration combined treatment and low‐concentration fullerene groups inhibited metal(loid)s uptake by plants. Scanning electron microscopy (SEM) was then used to observe the surface morphology of cucumber leaves. Significant differences were observed on disease resistance in plants across the different nano‐material conditions. Collectively, these findings suggest that both nano‐silica materials and fullerene have the potential to control metal(loid)s toxicity in plants.Inspec keywords: soil pollution, cadmium, silicon compounds, surface morphology, fullerenes, toxicology, fertilisers, scanning electron microscopy, crops, spraying, nanoparticles, sorption, plant diseases, agricultural safetyOther keywords: cucumber leaves, nanosilica materials, fullerene, spraying process, metalloids absorption, toxicity, scanning electron microscopy, surface morphology, disease resistance, soil pollution, SiO2 , Cd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号