首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
化学工业   1篇
轻工业   1篇
石油天然气   1篇
无线电   1篇
原子能技术   1篇
  2022年   1篇
  2021年   1篇
  2015年   1篇
  2013年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Covalent organic frameworks (COFs) have emerged as an exciting new class of porous materials constructed by organic building blocks via dynamic covalent bonds. They have been extensively explored as potentially superior candidates for electrode materials, electrolytes, and separators, due to their tunable chemistry, tailorable structures, and well-defined pores. These features enable rational design of targeted functionalities, facilitate the penetration of electrolytes, and enhance ion transport. This review provides an in-depth summary of the recent progress in the development of COFs for diverse battery applications, including lithium-ion, lithium–sulfur, sodium-ion, potassium-ion, lithium–CO2, zinc-ion, zinc–air batteries, etc. This comprehensive synopsis pays particular attention to the structure and chemistry of COFs and novel strategies that have been implemented to improve battery performance. Additionally, current challenges, possible solutions, and potential future research directions on COFs for batteries are discussed, laying the groundwork for future advances for this exciting class of material.  相似文献   
2.
The effects of water content, shear rate, temperature, and solid particle concentration on viscosity reduction(VR) caused by forming stable emulsions were investigated using Omani heavy crude oil. The viscosity of the crude oil was initially measured with respect to shear rates at different temperatures from 20 to 70 C. The crude oil exhibited a shear thinning behavior at all the temperatures. The strongest shear thinning was observed at 20 C. A non-ionic water soluble surfactant(Triton X-100) was used to form and stabilize crude oil emulsions. The emulsification process has significantly reduced the crude oil viscosity. The degree of VR was found to increase with an increase in water content and reach its maximum value at 50 % water content.The phase inversion from oil-in-water emulsion to water-inoil emulsion occurred at 30 % water content. The results indicated that the VR was inversely proportional to temperature and concentration of silica nanoparticles. For water-in-oil emulsions, VR increased with shear rate and eventually reached a plateau at a shear rate of around350 s-1. This was attributed to the thinning behavior of the continuous phase. The VR of oil-in-water emulsions remained almost constant as the shear rate increased due to the Newtonian behavior of water, the continuous phase.  相似文献   
3.
4.
The synthesis of electrically Conducting Natural Rubber (CNR) nanoparticles from natural rubber (cis 1, 4 polyisoprene) by a simple chemical doping technique is reported for the first time. Much before the establishment of conjugation as a precondition for polymers to be conducting a typical nonconjugated polymer like cis 1,4 polyisoprene was shown to develop intrinsic conductivity on doping. However, the possibility of developing conducting nanoparticles of natural rubber by doping has never been explored. Doping of natural rubber solution with Antimony pentchloride is found to lead to the formation of nanosized rubber particles with improved thermal stability and lower degradation characteristics than that of pristine rubber. Transmission electron microscopy and Dynamic Light Scattering experiments revealed a highly uniform dispersion of the particles with sizes in the range of 4 nm. The doped nanoparticles are found to retain “rubbery” properties of natural rubber and therefore these can be rightly termed as Rubber Nano particles. The development of nanoparticles of rubber assumes great significance in that it would lead to hitherto unknown applications for natural rubber in micro applications‐like sensors, and optoelectronics devices to macro applications such as compatible reinforcing fillers for elastomers and plastics to replace conventional fillers like carbon particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
5.
Ion implantation is one of the most powerful and well-known technique for surface modification in polymers. Thin films of Natural Rubber were modified by the implantation of 60 keV N+ ions to the fluences of 1011–1015 cm−2. The electrical conductivity measurements of irradiated sample show 10 orders of magnitude compared to pristine state. Along with conductivity change there was a noticeable change in color to a dense shiny black for the most highly conducting films. The analysis of temperature dependence of dc electrical conductivity data reveals a three-dimensional variable range hopping mechanism. The microstructural evolution of the virgin and ion-beam modified samples was investigated by spectroscopic analysis such as UV/Vis & FTIR. These spectral studies gave evidence for the production of conjugate double bonds, which is a clear cut indication of implant doping. This is an important result since ion implantation usually does not produce doping in polymeric materials and only a few reports about the possibility of implant doping in polymers are available. The significant aspect of this study is that this confirms, the Natural Rubber’s potential to be used as a microelectronic device material. Also an attempt has been made to compare the conductivity enhancement in Natural Rubber by chemical and implant doping.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号