首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
综合类   1篇
化学工业   5篇
轻工业   1篇
自动化技术   1篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
Box–Behnken (BB) design of response surface methodology (RSM) was effectively applied to optimize fabrication conditions of modified poly(vinyl alcohol) (PVA) and chitosan (CS) blended pervaporation (PV) membranes. The PVA/CS membranes were crosslinked either by chemical reaction with glutaraldehyde (GA) or by heat‐treating at different temperatures. The main objectives were to determine the optimal levels of fabricating parameters and also to investigate interactions among the variables. CS content in the blended membranes, concentration of crosslinking agent and heat‐treating temperature were the fabrication parameters, the main effects and interaction effects of which on membrane structure and PV performance toward isopropanol (IPA)/water dehydration were investigated, and for which regression models were established. The modified PVA/CS blended membranes were characterized by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) as well as X‐ray diffraction (XRD). It was found that the CS content is the most significant factor influencing flux and separation factor among the three studied variables and the experimental results are in excellent accordance with predicted values from the developed RSM regression models. The RSM results indicated that under preparation conditions of 80 wt % CS in the blended membrane, 0.58 wt % GA concentration, and 77 °C heat‐treating temperature, the maximum separation factor of 5222.8 and the normalized flux of 9.407 kg µm/m2h can be acquired with feed content of 85 wt % IPA at 25 °C, showing that the prepared membrane is highly efficient for PV dehydration of IPA. The models were satisfactorily validated against experimental data. Furthermore, the optimum membrane presents excellent separation performance at different feed compositions and temperatures. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44587.  相似文献   
2.
The liquid phase adsorption process was studied on nano-zeolite Ba-X for separating para-xylene from a feed mixture containing all C8 aromatics. Nano-zeolite Ba-X with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with barium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption and in situ Fourier transform infrared (FTIR) spectroscopy. The adsorption process was carried out in a breakthrough system at temperature range of 120–160 °C under 4–7 atm pressure. The influence of nano-zeolite water content on the separation process was studied. The optimization of adsorption process was also investigated by changing the operation conditions. The adsorption isotherm for all C8 aromatic isomers and also desorbents indicated the typical Langmuir type. The selectivity factor of adsorbent for para-xylene and the adsorption capacity at saturation of the different adsorbate samples with each component from C8 aromatic mixture were determined. It was observed that the selectivity of para-xylene increased by barium ion-exchange of cationic sites in nano-zeolite X and the adsorbent selectivity for para-xylene relative to each of meta-xylene, ortho-xylene and ethyl-benzene under the optimum conditions was found to be 7.191, 2.819 and 3.745, in the order given. It was also studied the influence of desorbent type on its selectivity for para-xylene compared to each isomer from the C8 aromatic mixture.  相似文献   
3.
Industrial adsorptive separation process for liquids is most successful when the involved species have very close boiling points, making distillation expensive or are thermally sensitive at convenient distillation temperatures. The adsorption process was studied for separating meta-xylene from a feed mixture containing all C8 aromatics on binder-free X and Y zeolites in the liquid phase. Zeolitic adsorbents with different SiO2/Al2O3 were synthesized by the hydrothermal method and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The adsorption process was carried out in a breakthrough system at temperature of 110–160 °C and pressure of 6–8 atm. The influence of adsorbent moisture content on the separation process was studied. The optimization of adsorption process was also investigated by the changing operation conditions. The isotherms for each isomer of C8 aromatics and the desorbent possess the adsorption characteristics of Langmuir type. The selectivity factor of meta-xylene and the saturation adsorption capacities of adsorbates were determined. It was observed that the selectivity of meta-xylene increased by sodium ion-exchanging of cationic sites in Y zeolite and the selectivity factor of meta-xylene/para-xylene, meta-xylene/ortho-xylene and meta-xylene/ethylbenzene in the optimum conditions was determined to be 2.62, 2.83 and 5.93, respectively.  相似文献   
4.
为了减少因驾驶员的生理和心理健康状况变化引发的交通事故,实现对驾驶员健康状态的自动监测和实时优化,提出以控制论的基本理论为基础的驾驶员健康状态闭环反馈系统框架.首先基于驾驶员日志建立个性化健康模型;然后结合各种传感器实时采集的驾驶员、车辆和道路环境等多模态数据,对驾驶员当前健康状态进行估计;最后针对预设健康目标,为驾驶员提供可执行的行为建议,实现对驾驶员健康状态的导航优化.在最关键的实时监测环节,提出基于注意力的卷积神经网络(convolutional neural network, CNN)-长短期记忆网络(long short term memory, LSTM)的多模态融合模型,实现对驾驶员压力、情绪和疲劳3个方面的健康状态估计.在私有数据集和公开数据集上分别开展的实验验证均获得高于90%的检测准确率.实验结果表明,提出的模型和方法可以实时准确监测驾驶员的压力、情绪和疲劳状态,为实现驾驶员的个性化健康导航系统提供有力支撑.  相似文献   
5.
6.
The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption, transform electron microscopy (TEM) and in situ Fourier transform infrared (FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylben-zene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.  相似文献   
7.
The influence of zinc to the synthesis of ZSM-5 nanocatalysts (Si/Al?=?24) was investigated in xylene isomerization reactions. Pt was doped through partial vacuum impregnation method on both the parent and Zn-ZSM-5. The synthesized nanocatalyst were characterized by ICP, BET, XRD, FE-SEM, XPS, 27Al MAS NMR, FTIR, NH3-TPD, and TG analysis. The concentration of weak acid sites of ZSM-5 nanocatalyst slightly decreased while that of strong acid sites increased with the addition of Zn to the nano zeolite structure. Reducing weak acidity resulted in lower coke formation and remarkable catalytic stability in Zn-ZSM-5 nanocatalysts. The precence of Pt on the Zn-containing ZSM-5 illustrated simultaneous high PX yield and high catalytic stability. (0.1 wt%)Pt/(0.8 wt%) Zn-ZSM-5 as an active and stable nanocatalyst for xylene isomerization reactions demonstrated high PX yield (32.6 wt%), high level of EB conversion (68%) and low xylene loss (2.1%).

Graphical Abstract

  相似文献   
8.
Aflatoxin M1 (AFM1) is a carcinogenic mycotoxin mostly found in dairy products. The aim of this study was to evaluate the anti-aflatoxin effect of Bifidobacterium bifidum and Saccharomyces cerevisiae with two different concentrations (108 and 1010 cfu/mL), alone or mixed, in contaminated skim milk with three concentrations of AFM1 (0.1, 0.25 and 0.5 μg/mL) and incubated at 4, 25 and 37°C for different times (30, 60, 120 min and 24 h). We found that the storage time is a key factor that significantly affects AFM1 removal. Also, removal of AFM1 was dependent on other factors such as micro-organisms' concentration, incubation temperature and toxin concentration. The effective strategy for the highest removal of AFM1 (90%) in contaminated milk spiked with 0.5 μg/mL, which was treated with mixed strains at concentration1010 cfu/mL and incubated at 37°C after 24 h. The presented methodology can be considered as a potential method for reducing the aflatoxin content of polluted dairy products.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号