首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   18篇
  国内免费   1篇
电工技术   4篇
化学工业   70篇
机械仪表   3篇
建筑科学   2篇
能源动力   31篇
轻工业   15篇
水利工程   2篇
石油天然气   1篇
无线电   13篇
一般工业技术   37篇
冶金工业   6篇
原子能技术   3篇
自动化技术   20篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   8篇
  2020年   6篇
  2019年   10篇
  2018年   19篇
  2017年   15篇
  2016年   15篇
  2015年   3篇
  2014年   9篇
  2013年   26篇
  2012年   23篇
  2011年   23篇
  2010年   6篇
  2009年   3篇
  2008年   9篇
  2007年   5篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1988年   1篇
  1982年   1篇
排序方式: 共有207条查询结果,搜索用时 0 毫秒
1.
Given a set S of sites and a set O of weighted objects, an optimal location query finds the location(s) where introducing a new site maximizes the total weight of the objects that are closer to the new site than to any other site. With such a query, for instance, a franchise corporation (e.g., McDonald’s) can find a location to open a new store such that the number of potential store customers (i.e., people living close to the store) is maximized. Optimal location queries are computationally complex to compute and require efficient solutions that scale with large datasets. Previously, two specific approaches have been proposed for efficient computation of optimal location queries. However, they both assume p-norm distance (namely, L1 and L2/Euclidean); hence, they are not applicable where sites and objects are located on spatial networks. In this article, we focus on optimal network location (ONL) queries, i.e., optimal location queries in which objects and sites reside on a spatial network. We introduce two complementary approaches, namely EONL (short for Expansion-based ONL) and BONL (short for Bound-based ONL), which enable efficient computation of ONL queries with datasets of uniform and skewed distributions, respectively. Moreover, with an extensive experimental study we verify and compare the efficiency of our proposed approaches with real world datasets, and we demonstrate the importance of considering network distance (rather than p-norm distance) with ONL queries.  相似文献   
2.
3.
4.
Electrochemical characteristics of formic acid (FM) and formaldehyde (FM) oxidation on a potent catalyst, platinum nanoparticles supported on carbon-ceramic substrate (CC/Pt), were investigated via cyclic voltammetric and chronoamperometric analysis in mixed 0.75 M FM (or 0.75 M FM) and 0.1 M H2SO4 solutions. The results were compared to those at a polycrystalline platinum electrode and platinum particles deposited on platinum and glassy carbon electrodes. It was found that CC/Pt was catalytically more active than smooth platinum and platinum particles supported on platinum and glassy carbon electrodes. On the other hand, such nanoparticles on CC substrate exhibit better catalytic behavior towards FA and FM than the corresponding platinum and glassy carbon electrodes, which is raised form high porosity of CC substrate for better distribution of platinum particles and to produce of platinum particles in nano size. The effect of some experimental factors was studied and optimum conditions were suggested. Finally, the long-term stability of the modified electrode has also been investigated. These results indicate that the system studied in the present work is the most promising system for use in fuel cells.  相似文献   
5.
Using ultrasonic top-to-down method, nanoparticles of two N-nicotinyl phosphoric triamides: C5H4NC(O)NHP(O)R, R?=?4-CH3-NC5H10 (1), (CH3)3CNH2 (2) were prepared for the first time and characterized by 31P, 13C, 1H NMR, FTIR, scanning electron microscopy, energy dispersive X-ray. The average particle size of 1 and 2 were 60–70 and 40–50?nm, respectively, and the morphology was spherical for 1 and rod for 2. Solid state (powder) antibacterial effect of these compounds and two other similar reported ones, in their macro- and nanosizes, were evaluated with colony counting method on one Gram-positive (Staphylococcus aureus) and one Gram-negative (Escherichia coli) bacteria in Brain–Heart infusion culture medium. Results showed that all the macro- and nanosized compounds, except macrosized 1, were antibacterial and all nanoscaled ones had stronger antibacterial activity than their macroscaled analogues. The most effect of the particle size was observed for 1: by decreasing the particle sizes, the antibacterial activity state of 1 was changed from inactive (for macro) to potent (for nano).  相似文献   
6.
A new silane-containing acrylic macromonomer, maleimidedoethoxybutoxydimethylsiloxy butyl acrylate (MEBDMSBA), based on maleic anhydride (MA), ethanolamine (EA), 1,4-butanediol (BDO), dichlorodimethylsilane (DCDMS), and acrylic acid (AA) has been synthesized for formulation of waterborne polyurethane (WPU). Also a series of new silane-containing WPU, methyl methacrylate (MMA), MEBDMSBA, and montmorillonite (MMT) with organically modified montmorillonite (OMMT) content (1.25 wt%) hybrid nanocomposites have been successfully prepared by the emulsion polymerization in the presence of a WPU dispersion, using ammonium peroxodisulfate (APS) as an initiator. The WPU dispersion has been synthesized by a polyaddition reaction of isophorone diisocyanate (IPDI) on polypropylene glycol (PPG-1000) and dimethylol propionic acid (DMPA) as chain extender. The monomer was characterized by Fourier transformer infrared spectroscopy (FTIR), elemental analysis, proton (1H NMR), and carbon (13C NMR) nuclear magnetic resonance spectroscopes, respectively. The nanocomposite emulsions were also characterized using Fourier transform infrared spectroscopy (FTIR) and laser light scattering. Thermal properties of the copolymers were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The OMMT was characterized by FTIR and X-ray diffraction (XRD). The morphology of copolymers was investigated by scanning electron microscopy (SEM) and transition electron microscopy (TEM), and then the effects of silane concentrations on the water absorption ratio were examined. Results showed that OMMT could improve the properties of emulsion; in other words, the properties of nanocomposite emulsion were better when compared with those of the silane–acrylate emulsion.  相似文献   
7.
Multiwalled carbon nanotubes (MWNTs) were coated with polypyrrole (PPy) using in situ enzymatic polymerization of pyrrole catalyzed by a laccase (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) from Trametes versicolor. Transmission electron microscopy revealed that the MWNTs were uniformly coated with very thin layers of PPy without any indication of globular polymer aggregate formations. The enzymatic synthesis of the MWNTs/PPy composites was quite simple being performed in a one‐pot aqueous solution (pH 4.0) under mild reaction conditions. The potential of the composites with respect to the development of energy storage devices was demonstrated by fabricating a two‐electrode coin cell capacitor (diameter 20 mm, thickness 1.6 mm) utilizing the composites as electrode materials. The capacitance of the cell was 28.0 F g?1 for the electrode material as measured by a galvanostatic charge–discharge method. The energy density and power density were 2.55 and 805 W kg?1, respectively, which were close to those of the capacitors classified as ultracapacitors. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43307.  相似文献   
8.
Electrolyte powders with low sintering temperature and high-ionic conductivity can considerably facilitate the fabrication and performance of solid oxide fuel cells (SOFCs). Gadolinia-doped ceria (GDC) is a promising electrolyte for developing intermediate- and low-temperature (IT and LT) SOFCs. However, the conventional sintering temperature for GDC is usually above 1200 °C unless additives are used. In this work, a nanocrystalline powder of GDC, (10 mol% Gd dopant, Gd0.1Ce0.9O1.95) with low-sintering temperature has been synthesized using ammonium benzoate as a novel, environmentally friendly and cost-effective precursor/precipitant. The synthesized benzoate powders (termed washed- and non-washed samples) were calcined at a relatively low temperature of 500 °C for 6 h. Physicochemical characteristics were determined using thermal analysis (TG/DTA), Raman spectroscopy, FT-IR, SEM/EDX, XRD, nitrogen absorptiometry, and dilatometry. Dilatometry showed that the newly synthesized GDC samples (washed and non-washed routes) start to shrink at temperatures of 500 and 600 °C (respectively), reaching their maximum sintering rate at 650 and 750 °C. Sintering of pelletized electrolyte substrates at the sintering onset temperature for commercial GDC powder (950 °C) for 6 h, showed densification of washed- and non-washed samples, obtaining 97.48 and 98.43% respectively, relative to theoretical density. The electrochemical impedance spectroscopy (EIS) analysis for the electrolyte pellets sintered at 950 °C showed a total electrical conductivity of 3.83 × 10?2 and 5.90 × 10?2 S cm?1 (under air atmosphere at 750 °C) for washed- and non-washed samples, respectively. This is the first report of a GDC synthesis, where a considerable improvement in sinterability and electrical conductivity of the product GDC is observed at 950 °C without additives addition.  相似文献   
9.
A dynamic mathematical model for drying of agricultural products in an indirect cabinet solar dryer is presented. This model describes the heat and mass transfer in the drying chamber and also considers the heat transfer and temperature distribution in a solar collector under transient conditions. For this purpose, using conservation laws of heat and mass transfer and considering the physical phenomena occurring in a solar dryer, the governing equations are derived and solved numerically. The model solution provides an effective tool to study the variation of temperature and humidity of the drying air, drying material temperature, and its moisture content on each tray. The predicted results are compared with available experimental data. It is shown that the model can predict the performance of the cabinet solar dryer in unsteady-state operating conditions well. Furthermore, the effect of some operating parameters on the performance and efficiency of dryer is investigated and compared with selected published data.  相似文献   
10.
Polyvinylchloride-blend-styrene butadiene rubber based nanocomposite cation exchange membranes were prepared by solution casting technique. Iron-oxide nanoparticles and Ag-nanolayer were simultaneously utilized as filler and surface modifier in membrane fabrication. The effects of Ag-nanolayer film thickness on membrane physicochemical and antibacterial characteristics of nanocomposite PVC-blend-SBR/Iron-oxide nanoparticles were studied. SEM images showed membrane roughness decreasing by Ag nanolayer thickness increasing. Membrane charge density and selectivity declined by Ag nanolayer coating up to 5 nm in membranes and then showed increasing trend by more nanolayer thickness. Ionic flux also showed increasing trend. Membranes showed good ability in E-Coli removal. 20 nm Ag-nanolayer coated membrane showed better performance compared to others.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号