首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学工业   2篇
一般工业技术   3篇
  2012年   3篇
  2010年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The effect of catalyst calcination temperature (450 °C, 600 °C, and 750 °C) on catalytic performance of synthesized and commercial grade sulfated zirconia catalysts towards isosynthesis was studied. The characteristics of these catalysts were determined by using various techniques including BET surface area, XRD, NH3- and CO2-TPD, ESR, and XPS in order to relate the catalytic reactivity with their physical, chemical, and surface properties. It was found that, for both synthesized and commercial sulfated zirconia catalysts, the increase of calcination temperature resulted in the increase of monoclinic phase in sulfated zirconia, and the decrease of acid sites. According to the catalytic reactivity, at high calcination temperature, lower CO conversion, but higher isobutene production selectivity was observed from commercial sulfated zirconia. As for synthesized sulfated zirconia, the isobutene production selectivity slightly decreased with increasing calcination temperature, whereas the CO conversion was maximized at the calcination temperature of 600 °C. We concluded from the study that the difference in the calcination temperatures influenced the catalytic performance, sulfur content, specific surface area, phase composition, the relative intensity of Zr3+, and acid-base properties of the catalysts.  相似文献   
2.
Catalytic performances of sulfated zirconia catalysts with various contents of sulfur (from 0.1 to 0.75%) on isosynthesis were studied. It was firstly found that undoped-zirconia synthesized from zirconyl nitrate provided higher activity towards isosynthesis reaction (106 μmol kg-cat?1 s?1) compared to that synthesized from zirconyl chloride (84.9 μmol kg-cat?1 s?1). Nevertheless, the selectivity of isobutene in hydrocarbons was relatively lower. It was then observed that the catalytic reactivity and selectivity significantly improved by sulfur loading. The most suitable sulfur loading content seems to be at 0.1%, which gave the highest reaction rate and selectivity of isobutene. By applying several characterization techniques, i.e. BET, XRD, NH3- and CO2-TPD and SEM, it was revealed that the high reaction rate and selectivity towards isosynthesis reaction of sulfated zirconia catalysts are related to the acid–base properties, Zr3+ quantity and phase composition.  相似文献   
3.
Imaging of individual protein molecules at the single amino acid level has so far not been possible due to the incompatibility of proteins with the vacuum environment necessary for high-resolution scanning probe microscopy. Here we demonstrate electrospray ion beam deposition of selectively folded and unfolded cytochrome c protein ions on atomically defined solid surfaces in ultrahigh vacuum (10(-10) mbar) and achieve unprecedented resolution with scanning tunneling microscopy. On the surface folded proteins are found to retain their three-dimensional structure. Unfolded proteins are observed as extended polymer strands displaying submolecular features with resolution at the amino acid level. On weakly interacting surfaces, unfolded proteins refold into flat, irregular patches composed of individual molecules. This suggests the possibility of two-dimensionally confined folding of peptides of an appropriate sequence into regular two-dimensional structures as a new approach toward functional molecular surface coatings.  相似文献   
4.
The high intrinsic spin and long spin relaxation time of manganese-12-acetate (Mn(12)) makes it an archetypical single molecular magnet. While these characteristics have been measured on bulk samples, questions remain whether the magnetic properties replicate themselves in surface supported isolated molecules, a prerequisite for any application. Here we demonstrate that electrospray ion beam deposition facilitates grafting of intact Mn(12) molecules on metal as well as ultrathin insulating surfaces enabling submolecular resolution imaging by scanning tunneling microscopy. Using scanning tunneling spectroscopy we detect spin excitations from the magnetic ground state of the molecule at an ultrathin boron nitride decoupling layer. Our results are supported by density functional theory based calculations and establish that individual Mn(12) molecules retain their intrinsic spin on a well chosen solid support.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号