首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学工业   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
The one-dimensional dispersion model has been solved analytically as well as numerically to describe flow in continuous “closed” boundary systems using the celebrated Danckwerts boundary conditions. Nevertheless, a continuous state stochastic approach can sometimes be more appropriate especially in cases when input fluctuations are of the same order as the time scale of the system and in such cases an accurate treatment of the boundary conditions is indispensable for the successful application of the method. A deterministic approach was carried out in which the differential equation was solved using Fourier's method and the Laplace transform. These solutions were used as a yardstick to assess the precision of the stochastic solution with its proposed boundary conditions conforming to Danckwerts’ boundary conditions. Our problem is somehow simplified if we assume that the convection term and the dispersion term are constants independent of space and time. A stochastic differential equation was thus employed, governed by the Wiener process and solved using the Euler-Maruyama method.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号