首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学工业   1篇
建筑科学   1篇
无线电   3篇
一般工业技术   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  1998年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Iron crystallization in a fluidized-bed Fenton process   总被引:2,自引:0,他引:2  
The mechanisms of iron precipitation and crystallization in a fluidized-bed reactor were investigated. Within the typical Fenton’s reagent dosage and pH range, ferric ions as a product from ferrous ion oxidation would be supersaturated and would subsequently precipitate out in the form of ferric hydroxide after the initiation of the Fenton reaction. These precipitates would simultaneously crystallize onto solid particles in a fluidized-bed Fenton reactor if the precipitation proceeded toward heterogeneous nucleation. The heterogeneous crystallization rate was controlled by the fluidized material type and the aging/ripening period of the crystallites. Iron crystallization onto the construction sand was faster than onto SiO2, although the iron removal efficiencies at 180 min, which was principally controlled by iron hydroxide solubility, were comparable. To achieve a high iron removal rate, fluidized materials have to be present at the beginning of the Fenton reaction. Organic intermediates that can form ferro-complexes, particularly volatile fatty acids, can significantly increase ferric ion solubility, hence reducing the crystallization performance. Therefore, the fluidized-bed Fenton process will achieve exceptional performance with respect to both organic pollutant removal and iron removal if it is operated with the goal of complete mineralization. Crystallized iron on the fluidized media could slightly retard the successive crystallization rate; thus, it is necessary to continuously replace a portion of the iron-coated bed with fresh media to maintain iron removal performance. The iron-coated construction sand also had a catalytic property, though was less than those of commercial goethite.  相似文献   
2.
3.
The competitive kinetics technique is shown to be a useful and reliable tool for determining rate constants. Regardless of the conditions of the reaction and the operation mode, the intrinsic second-order rate constants of 2,6-dimethyl-aniline and hydroxyl radicals were 1.65 × 10(10), 1.60 × 10(10), and 1.71 × 10(10)M(-1)s(-1) in the absence of SiO(2) under complete-mix conditions, in the presence of SiO(2) under complete-mix conditions, and in a fluidized-bed Fenton reactor with SiO(2) as the media, respectively, demonstrating that the rates are comparable under a variety of reaction conditions. The average intrinsic second-order rate constant of o-toluidine and hydroxyl radicals obtained in a homogeneous system under various conditions was 7.36 × 10(9)M(-1)s(-1), indicating that o-toluidine is less susceptible to hydroxyl radicals than 2,6-dimethyl-anilne. Hydroxyl radicals primarily attacked the amine group rather than the methyl group of the o-toluidine to form o-cresol and 2-nitrotoluene, which sequentially transformed to carboxylic acids including acetic, oxalic, lactic, and maleic acids after the collapse of the benzene ring.  相似文献   
4.
5.
Temperature programmed oxidation of coke deposited on Pt based propane dehydrogenation catalysts reveals that the deposited coke can be categorised into three groups according to their burning temperatures. When coke was separated from the catalyst, however, only one TPO peak could be observed. Experimental results suggest that γ-Al2O3 enhances the coke burning process by increasing coke surface area contacts to oxygen. Pt may also act as a catalyst for the coke combustion reaction. Experiments also show that changing dehydrogenation reaction temperature, variation of H2/HC ratios, addition of only Sn or Sn and an alkali metal (Li, Na and K) can significantly affect the amount of each coke formed. Sample weight used in the temperature programmed oxidation (TPO) experiment also affects the resolution of TPO spectrum.  相似文献   
6.
Lithium transition metal phosphate olivines are enabling a new generation of high power, thermally stable, long‐life rechargeable lithium batteries that may prove instrumental in the worldwide effort to develop cleaner and more sustainable energy. Nanoscale (<100 nm) derivatives of the olivine family LiMPO4 (M = Fe, Mn, Co, Ni) are being adopted in applications ranging in size scale from hybrid and plug‐in hybrid electric vehicles to utilities‐scale power regulation. Following the previous paradigm set with intercalation oxides, most studies have focused on the pure ordered compounds and isovalent substitutions. In contrast, even the possibility for, and role of, aliovalent doping has been widely debated. Here, critical tests of plausible defect compensation mechanisms using compositions designed to accommodate Mg2+, Al3+, Zr4+, Nb5+ ions on the M1 and/or M2 sites of LiFePO4 with appropriate charge‐compensating defects are carried out, and conclusive crystallographic evidence for lattice doping, e.g., up to at least 12 atomic percent added Zr, is obtained. Structural and electrochemical analyses show that doping can reduce the lithium miscibility gap, increase phase transformation kinetics during cycling, and expand Li diffusion channels in the structure. Aliovalent modifications may be effective for introducing controlled atomic disorder into the ordered olivine structure to improve battery performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号