首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学工业   2篇
机械仪表   1篇
能源动力   4篇
轻工业   1篇
一般工业技术   5篇
自动化技术   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2003年   1篇
  2001年   1篇
  1992年   3篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Interface traps in a-Se:Te/Se double-layer xerographic photoreceptors were studied using thermally stimulated discharge (TSD) techniques. Two peaks are found in the TSD current curve which are believed to be due to two distinctly different types of space charge polarization. The well-defined low-temperature peak is centred at approximately –8 °C and it is due to the difference in the dielectric constants and electrical conductivities of a-Se:Te and a-Se layers. It is argued that on the application of an electric field with positive polarity applied to the a-Se:Te layer, the Maxwell-Wagner effect causes the build up of a positive (holes) space charge layer at the interface of the two layers. The observed TSD current peak seems to be dominated by the neutralization currents in the a-Se:Te layer. The broad high-temperature peak occurs between 30 and 50 °C in the thermograms and it is believed to be due to release of holes from the deep traps at the interface between the two layers. The density of these traps is estimated to be 1010 cm–3. The activation energy relaxation corresponds to the effective energy for the detrapping of holes from the interface states and is calculated to be 0.54 eV.  相似文献   
2.
Characterization and calibration of gas sensor is a complex problem due to the dynamic behavior of gases and the limitations of current technology. This article reports a flexible, robust, and autonomous integrated system that is able to perform characterization on metal oxide-based gas sensors in dynamic environments. The system controls the concentration and flow of the relevant gases into the gas chamber and simultaneously measuring the sensor response. This feature allows the characterization of the sensor under continuous dynamic flow of gases similar to conditions on a robot or flow pipes. Several experiments have been performed on the system using hydrogen sulfide. The results provide information on the general characteristics of the sensor as well as its sensitivity. The noise levels were studied with different reference voltages. Overall, the results verify that the system is reliable and able to produce repeatable measurements.  相似文献   
3.
The system chitosan : ethylene carbonate : LiCF3SO3 was prepared by the solution cast technique. To verify that the conductivity of the material is due to the salt, the electrical conductivity at room temperature of the chitosan acetate film and that of the chitosan acetate films containing different amounts of ethylene carbonate added to it were measured. The order of magnitude of the electrical conductivity was 10–10 S cm–1. Films containing fixed content of chitosan and plasticizer but different amounts of salt were then prepared in the same manner and the highest electrical conductivity obtained was 1.3 × 10–5 S cm–1 at room temperature. These results indicate that the conductivity is due to the salt. Conductivity-temperature studies show that the ln T versus 103/T graphs obey Arrhenius rule implying that the conductivity occurs by way of some thermally assisted mechanism. Polarization current measurement shows that the lithium ion transference number is 0.09. A LiMn2O4/chitosan-LiCF3SO3/C cell was fabricated which cycled between 1.5 to 2.5 V with fading capacity. This could be the result of LiF formation due to interaction between the salt and the fluorine in the binding agent.  相似文献   
4.
In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents.  相似文献   
5.
Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide–PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent.  相似文献   
6.
Gas distribution mapping (GDM) learns models of the spatial distribution of gas concentrations across 2D/3D environments, among others, for the purpose of localizing gas sources. GDM requires run-time robot positioning in order to associate measurements with locations in a global coordinate frame. Most approaches assume that the robot has perfect knowledge about its position, which does not necessarily hold in realistic scenarios. We argue that the simultaneous localization and mapping (SLAM) algorithm should be used together with GDM to allow operation in an unknown environment. This paper proposes an SLAM-GDM approach that combines Hector SLAM and Kernel DM?+?V through a map merging technique. We argue that Hector SLAM is suitable for the SLAM-GDM approach since it does not perform loop closure or global corrections, which in turn would require to re-compute the gas distribution map. Real-time experiments were conducted in an environment with single and multiple gas sources. The results showed that the predictions of gas source location in all trials were often correct to around 0.5–1.5 m for the large indoor area being tested. The results also verified that the proposed SLAM-GDM approach and the designed system were able to achieve real-time operation.  相似文献   
7.
The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications.  相似文献   
8.
Pure, layered compounds of overlithiated Li1+xNi0.8Co0.2O2 (x = 0.05 and 0.1) were successfully prepared by a modified combustion method. XRD studies showed that cell parameters of the material decreased with increasing the lithium content. SEM revealed that the morphology of particles changed from rounded polyhedral-like crystallites to sharp-edged polyhedral crystals with more doped lithium. EDX showed that the stoichiometries of Ni and Co agrees with calculated synthesized values. Electrochemical studies revealed the overlithiated samples have improved capacities as well as cycling behavior. The sample with x = 0.05 shows the best performance with a specific capacity of 113.29 mA?h?g-1 and the best capacity retention of 92.2% over 10 cycles. XPS results showed that the binding energy of Li 1s is decreased for the Li doped samples with the smallest value for the x = 0.05 sample, implying that Li+ ions can be extracted more easily from Li1.05Ni0.8Co0.2O2 than the other stoichiometries accounting for the improved performance of the material. Considerations of core level XPS peaks for transition metals reveal the existence in several oxidation states. However, the percentage of the+3 oxidation state of transition metals for the when x = 0.1 is the highest and the availability for charge transition from the+3 to+4 state of the transition metal during deintercalation is more readily available.  相似文献   
9.
In this paper, the Rama distribution (RD) is considered, and a new model called extended Rama distribution (ERD) is suggested. The new model involves the sum of two independent Rama distributed random variables. The probability density function (pdf) and cumulative distribution function (cdf) are obtained and analyzed. It is found that the new model is skewed to the right. Several mathematical and statistical properties are derived and proved. The properties studied include moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis and moment generating function. Some simulations are undertaken to illustrate the behavior of these properties. In addition, the reliability analysis of the distribution is investigated through the hazard rate function, reversed hazard rate function and odds function. The parameter of the distribution is estimated based on the maximum likelihood method. The distributions of order statistics for ERD are also presented. The performance of the suggested model is compared with several other lifetime distributions based on some goodness of fit tests on a real dataset. It turns out that the suggested model is more flexible than its competitors considered in this study, for modeling real lifetime data.  相似文献   
10.
Non-noble metal supported catalysts such as 20NiO/MgO, 20CuO/MgO and 20ZnO/MgO were catalyzed the gasification of oil palm frond biomass in supercritical water for hydrogen production. All the catalysts are found to be pure with no impurities present. The specific surface area of these catalysts can be arranged in the order of 20NiO/MgO (30.1 m2 g–1) > 20CuO/MgO (16.8 m2 g–1) > 20ZnO/MgO (13.1 m2 g–1). Although catalysts with larger specific surface area are beneficial for catalytic reactions, in this study, the largest specific surface area did not lead to the highest catalytic performance. It is found that the 20ZnO/MgO catalyst (118.1 mmol ml?1) shown the highest H2 yield than the 20CuO/MgO (81.1 mmol ml?1) and 20NiO/MgO (72.7 mmol ml?1) catalysts. In addition, these supported catalysts also shown higher H2 selectivity with reached 83.8%, 84.9% and 87.6% for 20CuO/MgO, 20NiO/MgO and 20ZnO/MgO catalysts. Other factors such as dispersion, basicity and bond strength play more important roles in supercritical water gasification of biomass to produce hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号